精英家教网 > 高中数学 > 题目详情

(12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量
(1)将利润表示为月产量的函数
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

(1)
(2)当月产量为300台时,公司获利润最大,最大利润为25000元

解析试题分析:(1)当时,
=


所以所求。                              ……6分
(2)当

所以当时,


所以当时,.
答:当月产量为300台时,公司获利润最大,最大利润为25000元.                   ……12分
考点:本小题主要考查分段函数,二次函数在实际问题中的应用.
点评:解决实际应用题,首先要仔细读题,从实际问题中抽象出数学问题,进而用熟悉的数学知识求解即可,另外,解决实际问题时,不要忘记实际问题限制的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格 (单位:元/千克)满足关系式y+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成品为3元/千克, 试确定销售价格x的值, 使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是(万元)和(万元),它们与投入资金(万元)的关系有经验公式:。今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为,如图所示。

(1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。那么,从药物释放开始,至少需要经过多少小时后,学生才能回到教室。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共8分)
提高二环路的车辆通行能力可有效改善整个城区的交通状况,在一般情况下,二环路上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当二环路上的车流密度达到600辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过60辆/千米时,车流速度为80千米/小时,研究表明:当60≤x≤600时,车流速度v是车流密度x的一次函数。
(Ⅰ)当0≤x≤600时,求函数f(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过二环路上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值。(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,其中
(Ⅰ)求上的单调区间;
(Ⅱ)求为自然对数的底数)上的最大值;
(III)对任意给定的正实数,曲线上是否存在两点,使得是以原点为直角顶点的直角三角形,且此三角形斜边中点在轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)
已知二次函数满足:,且
解集为
(1)求的解析式;
(2)设,若上的最小值为-4,求的值.

查看答案和解析>>

同步练习册答案