精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设函数
(1)当 时,用表示的最大值
(2)当时,求的值,并对此值求的最小值;
(3)问取何值时,方程=上有两解?

(1)(2)
(3)

解析试题分析:(1)   ()   ()
(2) 将代入()式, 得 或
时,   
时,    
(3)
考点:本试题考查了函数与方程的知识。
点评:解决该试题的关键是对于函数的最值,要理解分段函数的最值的准确理解和运用,同时对于方程根的问题,可以运用分离参数 思想来得到。属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数在一个周期内的图象下图所示。

(1)求函数的解析式;
(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(其中)的最大值为2,最小正周
期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为为坐标原点,求△ 的
面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知最小正周期为
(1).求函数的单调递增区间及对称中心坐标
(2).求函数在区间上的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知为第三象限角,
(1)化简
(2)若,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.
(1)求函数的最小正周期和单调增区间;
(2)在中,分别是角的对边,R为外接圆的半径,且,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是三角形的内角,且是关于方程的两个根。
(1)求的值;(6分)
(2)求的值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)确定函数上的单调性并求在此区间上的最小值.

查看答案和解析>>

同步练习册答案