【题目】在棱长为1的正方体中,点关于平面的对称点为,则与平面所成角的正切值为
A. B. C. D. 2
【答案】B
【解析】
利用等体积法求得点到平面的距离为,连接,连接,可证平面,由于点关于平面的对称点为,则点在线段上,根据线段的比例关系可得,从而找出点的位置,过作的垂线交于,从而可得平面,所以与平面所成角为,求出其正切值即可得到答案。
由题可得,
由于,即,则,解得:,所以点到平面的距离为,
连接,连接,由于在正方体中, ,则平面,所以,同理可证:平面,得到:,
则可得: ,故平面
由于点关于平面的对称点为,则点在线段上,
因为点到平面的距离为,则,
在正方体中,,故,
所以点为的三等分点,过作的垂线交于,
则, ,
由于平面,则平面,
连接,则与平面所成角为,
所以与平面所成角的正切值为:
故答案选B
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点坐标是,过点且垂直于长轴的直线交椭圆于两点,且.
(1)求椭圆的标准方程;
(2)过点的直线与椭圆交于不同的两点,问三角形内切圆面积是否存在最大值?若存在,请求出这个最大值及此时直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:
;平面;
三棱锥的体积为定值;异面直线所成的角为定值,
其中正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于两点,为坐标原点,直线与轴相交于点,且.
(1)求证:;
(2)求点的横坐标;
(3)过点分别作抛物线的切线,两条切线交于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定,考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式,随着金融业的发展,普通人能够使用的投资理财工具也多了起来,为了研究某种理财工具的使用情况,现对年龄段的人员进行了调查研究,将各年龄段人数分成5组:,,,,,并整理得到频率分布直方图:
(1)求图中的a值;
(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中,各抽取多少人;
(3)由频率分布直方图,求所有被调查人员的平均年龄.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①命题“若 ,则 ”的否命题是假命题;
②命题 ,使 ,则 ;
③“ ”是“函数 为偶函数”的充要条件;
④命题 “ ,使 ”,命题 “在 中,若 ,则 ”,那么命题为真命题.
其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点分别为和,短轴的两个端点分别为和,点在椭圆上,且满足,当变化时,给出下列三个命题:
①点的轨迹关于轴对称;②的最小值为2;
③存在使得椭圆上满足条件的点仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,且满足 (k∈R).
(1)求k和数列{an}的通项公式;
(2)若数列{bn}满足bn=,求数列{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com