观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=
(1+2+3+4)2,…,根据上述规律,第四个等式为.
(3)
解 (1)f’(x)=,g’(x)=(x>0),
由已知得 =alnx,
=, 解德a=,x=e2,
两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)= ,
切线的方程为y-e=(x- e2).
(2)由条件知
Ⅰ 当a.>0时,令h (x)=0,解得x=,
所以当0 < x< 时 h (x)<0,h(x)在(0,)上递减;
当x>时,h (x)>0,h(x)在(0,)上递增。
所以x>是h(x)在(0, +∞ )上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。
所以Φ (a)=h()= 2a-aln=2
Ⅱ当a ≤ 0时,h(x)=(1/2-2a) /2x>0,h(x)在(0,+∞)递增,无最小值。
故 h(x) 的最小值Φ (a)的解析式为2a(1-ln2a) (a>o)
(3)由(2)知Φ (a)=2a(1-ln2a)
则 Φ 1(a )=-2ln2a,令Φ 1(a )=0 解得 a =1/2
当 0<a<1/2时,Φ 1(a )>0,所以Φ (a ) 在(0,1/2) 上递增
当 a>1/2 时, Φ 1(a )<0,所以Φ(a ) 在 (1/2, +∞)上递减。
所以Φ(a )在(0, +∞)处取得极大值Φ(1/2 )=1
因为Φ(a )在(0, +∞)上有且只有一个极致点,所以Φ(1/2)=1也是Φ(a)的最大值
所当a属于 (0, +∞)时,总有Φ(a) ≤ 1
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
3 |
2 |
3 |
7 |
3 |
8 |
3 |
10 |
3 |
11 |
3 |
16 |
3 |
17 |
3 |
19 |
3 |
20 |
3 |
22 |
3 |
23 |
3 |
3n+1 |
3 |
3n+2 |
3 |
3m-2 |
3 |
3m-1 |
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com