精英家教网 > 高中数学 > 题目详情
如图,Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-2
2
),顶点C在x轴上.
(1)求BC边所在直线方程;
(2)M为Rt△ABC外接圆的圆心,求圆M的方程;
(3)直线l与圆相切于第一象限,求切线与两坐标轴所围成的三角形面积最小时的切线方程.
分析:(1)由顶点B,C的坐标可求BC的斜率,再根据点C(3,0)可求BC边所在直线方程;
(2)Rt△ABC外接圆是以O为原点,3为半径的圆,从而可求圆M的方程;
(3)设直线方程为
x
a
+
y
b
=1(a>0,b>0)
,利用直线l与圆相切可知
ab
a2+b2
=3
,从而利用均值不等式有ab≥18,因此可求直线方程.
解答:解:(1)kBC=
1
2
,∵C(3,0),∴BC:x-
2
y-3=0

(2)由(1)知C(3,0),∵M为Rt△ABC外接圆的圆心,所以M坐标为(0,0),所以圆M:x2+y2=9.
(3)设直线方程为
x
a
+
y
b
=1(a>0,b>0)
,即bx+ay-ab=0,S=
1
2
ab

由相切可知
ab
a2+b2
=3
.由均值不等式3=
ab
a2+b2
ab
2ab
=
ab
2
,则ab≥18.
所以S=
1
2
ab≥9
,当且仅当a=b=3
2
时等号成立,则直线方程为x+y-3
2
=0
点评:本题主要考查直线与圆的方程的求解,考查基本不等式的运用,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-数学公式),顶点C在x轴上.
(1)求BC边所在直线方程;
(2)M为Rt△ABC外接圆的圆心,求圆M的方程;
(3)直线l与圆相切于第一象限,求切线与两坐标轴所围成的三角形面积最小时的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,Rt△ABC的两条直角边长分别为a和b(a>b),A与B两点分别在x轴的正半轴和y轴的正半轴上滑动,求直角顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京四中高二(上)期中数学试卷(解析版) 题型:解答题

如图,Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-),顶点C在x轴上.
(1)求BC边所在直线方程;
(2)M为Rt△ABC外接圆的圆心,求圆M的方程;
(3)直线l与圆相切于第一象限,求切线与两坐标轴所围成的三角形面积最小时的切线方程.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年北京四中高一(下)期末数学试卷(解析版) 题型:解答题

如图,Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-),顶点C在x轴上.
(1)求BC边所在直线方程;
(2)M为Rt△ABC外接圆的圆心,求圆M的方程;
(3)直线l与圆相切于第一象限,求切线与两坐标轴所围成的三角形面积最小时的切线方程.

查看答案和解析>>

同步练习册答案