精英家教网 > 高中数学 > 题目详情
10.已知f(x)=log3$\frac{sinx-cosx}{sinx+cosx}$,则f(x)在区间[$\frac{5}{12}$π,$\frac{7}{12}$π]上的最小值为$-\frac{1}{2}$.

分析 令t=$\frac{sinx-cosx}{sinx+cosx}$,分x=$\frac{π}{2}$和x$≠\frac{π}{2}$求取t的范围,然后利用对数函数的性质求得原函数的值域,则f(x)在区间[$\frac{5}{12}$π,$\frac{7}{12}$π]上的最小值可求.

解答 解:令t=$\frac{sinx-cosx}{sinx+cosx}$,x∈[$\frac{5}{12}$π,$\frac{7}{12}$π],
当x=$\frac{π}{2}$时,t=$\frac{sinx-cosx}{sinx+cosx}$=1,f(x)=g(t)=log3t=log31=0;
当x$≠\frac{π}{2}$时,t=$\frac{sinx-cosx}{sinx+cosx}$=$\frac{tanx-1}{tanx+1}=\frac{tanx+1-2}{tanx+1}=1-\frac{2}{tanx+1}$,
由x∈[$\frac{5}{12}$π,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{7}{12}$π],得
tanx∈[$\frac{\sqrt{3}+1}{\sqrt{3}-1}$,+∞)∪(-∞,$\frac{1+\sqrt{3}}{1-\sqrt{3}}$],
∴tanx+1∈∈[$\frac{2\sqrt{3}}{\sqrt{3}-3}$,+∞)∪(-∞,$\frac{2}{1-\sqrt{3}}$],
则-$\frac{2}{tanx+1}$∈[$\frac{\sqrt{3}}{3}$-1,0)∪(0,$\sqrt{3}-1$],
∴t∈[$\frac{\sqrt{3}}{3}$,1)∪(1,$\sqrt{3}$],
则log3t∈[$-\frac{1}{2}$,0)∪(0,$\frac{1}{2}$].
综上,f(x)在区间[$\frac{5}{12}$π,$\frac{7}{12}$π]上的值域为[$-\frac{1}{2},\frac{1}{2}$].
∴f(x)在区间[$\frac{5}{12}$π,$\frac{7}{12}$π]上的最小值为$-\frac{1}{2}$.
故答案为:$-\frac{1}{2}$.

点评 本题考查与三角函数有关的最值,考查了对数函数的性质,令t=$\frac{sinx-cosx}{sinx+cosx}$并求取t的范围是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数y=f(x)在区间[-4,-1],[1,3]上是减函数,在区间[-1,1],[3,4]上是增函数,在平面直角坐标系中画出这个函数的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知2x>21-x,则x的取值范围是(  )
A.RB.x<$\frac{1}{2}$C.x>$\frac{1}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知log23=a,则log29-2log26=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)和圆x2+y2=a2+b2在第一象限的交点为P,F1和A为双曲线的左焦点和右顶点,连接PF1,过点A作AM⊥PF1于点M,若$\overrightarrow{{F}_{1}M}$=3$\overrightarrow{MP}$,则△AF1M的面积为$\frac{27}{4}$,则此双曲线的方程为(  )
A.$\frac{x^2}{4}$-$\frac{y^2}{12}$=1B.$\frac{x^2}{2}$-$\frac{y^2}{6}$=1C.$\frac{x^2}{4}$-$\frac{y^2}{3}$=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列有关命题的说法错误的是(  )
A.命题“若x2-1=0,则x=1”的逆否命题为:“若x≠1则x2-1≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.若p∧q为假命题,则p、q均为假命题
D.对于命题p:?x∈R使得x2+x+1<0,则?p:?x∈R均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,k),$\overrightarrow{c}$=(-2cosx,sinx-k);
(1)若f(x)=$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$),求f(x)的最小正周期及方程f(x)=$\frac{1}{2}$的解集;
(2)若g(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$,求当k为何值时,g(x)的最小值为$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知sinα=$\frac{5}{13}$,α是第一象限角,则cos(π-a)的值为(  )
A.-$\frac{5}{13}$B.$\frac{5}{13}$C.-$\frac{12}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,试证:$\frac{π}{3}$≤$\frac{aA+bB+cC}{a+b+c}$<$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案