分析 由△=a2+24a>0,初步求得a的范围. 再根据韦达定理,α+β=a,α•β=-6a,求得β-α=$\sqrt{{(α+β)}^{2}-4α•β}$≤5 求得a的范围,综合可得a的范围.
解答 解:由题意可得△=a2+24a>0,∴a<-24或 a>0 ①.
再根据韦达定理,α+β=a,α•β=-6a,
可得β-α=$\sqrt{{(α+β)}^{2}-4α•β}$=$\sqrt{{a}^{2}+24a}$≤5,由此求得a≤-25或 a≥1②.
结合①②可得a≤-25或 a≥1.
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com