精英家教网 > 高中数学 > 题目详情
曲线f(x)=(x-2)(x3-1)在点(1,0)处的切线方程为(  )
分析:根据导数的几何意义求出函数在x=1处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.
解答:解:∵f(x)=(x-2)(x3-1)=x4-2x3-x+2,
∴f′(x)=4x3-6x2-1,
f′(x)|x=1=-3,
而切点的坐标为(1,0)
∴曲线f(x)=(x-2)(x3-1)在点(1,0)处的切线方程为:3x+y-3=0.
故选A.
点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切线的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

经过曲线f(x)=x2(x-2)+1上点(1,f(x))处的切线方程为


  1. A.
    x+2y-1=0
  2. B.
    2x+y-1=0
  3. C.
    x-y+1=0
  4. D.
    x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=数学公式,存在自公切线的是


  1. A.
    ①③
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省宁德市柘荣一中高三(上)第一次月考数学试卷(解析版) 题型:选择题

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切线的是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源:2011年福建师大附中高考数学模拟试卷(理科)(解析版) 题型:选择题

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切线的是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步练习册答案