精英家教网 > 高中数学 > 题目详情
已知a、b是异面直线,A、B是a上的两点,C、D是b上的两点,M、N分别是线段AC和BD的中点,则MN和a的位置关系是(  )
A、异面B、平行
C、相交D、平行、相交或异面
考点:空间中直线与平面之间的位置关系
专题:综合题,空间位置关系与距离
分析:利用反证法,判定MN和a只能是异面直线.
解答: 解:若MN和a平行或相交,设它们确定的平面为α,则A、B、M、N均在α内,即AM?α,BN?α.
又C∈AM,D∈BN,
∴C∈α,D∈α,即CD?α,这样直线a、b都在α内,与已知a、b是异面直线矛盾.
故MN和a只能是异面直线.
故选:A.
点评:本题考查空间中直线与平面之间的位置关系,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程x2+3y2=12,过点D(2,0)的直线l交椭圆于A、B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,三角形CDE是等边三角形,棱EF∥BC且EF=
1
2
BC=2.求证:FO∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.
(1)求a的值;
(2)若m,n是正实数,且m+n=a,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)满足:
①对任意x,y∈R,都有:f(x+y)=f(x)+f(y)-1;
②当x<0时,f(x)>1.
(Ⅰ)试判断函数f(x)-1的奇偶性;
(Ⅱ)试判断函数f(x)的单调性;
(Ⅲ)若不等式f(a2-2a-7)+
1
2
>0的解集为{a|-2<a<4},求f(5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用计算机产生0~1之间的群与随机数a,则事件-
1
2
<3a-1<0发生的概率为(  )
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

定义
a
?
b
=|
a
|•|
b
|sinθ(θ为
a
b
的夹角),给出下列命题.
a
?
b
=
b
?
a
;                  
②λ(
a
?
b
)=(λ
a
)?
b

a
?(
b
+
c
)=
a
?
b
+
a
?
c
;       
a
b
?
a
?
b
=|
a
|•|
b
|;
⑤设
a
=(x1,y1),
b
=(x2,y2),则
a
?
b
=|x1y2-x2y1|
其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=0,an+1=an+2n(n∈N*),那么a2011的值是(  )
A、2 0112
B、2 012×2 011
C、2 009×2 010
D、2 010×2 011

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3sin(2x+
π
6
)的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0、y0的值;
(2)求f(x)在区间[
π
12
π
2
]
上的最大值和最小值.

查看答案和解析>>

同步练习册答案