精英家教网 > 高中数学 > 题目详情
如图,正四面体ABCD的棱长为2,点E,F分别为棱BC,AD的中点,则
EF
BA
的值为(  )
A、4B、-4C、-2D、2
考点:空间向量的数量积运算
专题:空间向量及应用
分析:由于
EF
=
EA
+
AB
+
BF
=
1
2
DA
+
AB
+
1
2
BC
,可得
EF
BA
=(
1
2
DA
+
AB
+
1
2
BC
)
BA
=
1
2
AD
AB
-
AB
2
+
1
2
BC
BA
,即可得出.
解答: 解:∵
EF
=
EA
+
AB
+
BF
=
1
2
DA
+
AB
+
1
2
BC

EF
BA
=(
1
2
DA
+
AB
+
1
2
BC
)
BA
=
1
2
AD
AB
-
AB
2
+
1
2
BC
BA

=
1
2
×22cos60°
-22+
1
2
×22×cos60°

=-2.
故选:C.
点评:本题考查了向量的多边形法则、数量积运算、正四面体的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若θ∈[-
3
π
6
],试确定cosθ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,数列{bn}是等比数列,b1=
1
2
,a5-1恰为S4
1
b2
的等比中项,圆C:(x-2n)2+(y-
Sn
2=2n2,直线l:x+y=n,对任意n∈N*,直线l都与圆C相切.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若n=1时,c1=1+
1
1
b1
,n≥2时,cn=
1
1
bn-1
+1
+
1
1
bn-1
+2
+…+
1
1
bn
,{cn}的前n项和为Tn,求证:对任意≥2,都有Tn
n
2
+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地绿化治理沙漠需要大量用水,第1年的用水量约为100(百吨),第2年的用水量约为120(百吨).该地政府综合各种因素预测:①每年的用水量会逐年增加;②每年的用水量都不能达到130(百吨).某校数学兴趣小组想找一个函数y=f(x)来拟合该项目第x(x≥1)年与当年的用水量y(单位:百吨)之间的关系,则函数y=f(x)必须符合预测①:f(x)在[1,+∞)上单调递增;预测②:f(x)<130对x∈[1,+∞)恒成立.
(1)若f(x)=
m
x
+n,试确定m,n的值,并考察该函数是否符合上述两点预测;
(2)若f(x)=a•bx+c(b>0,b≠1),欲使得该函数符合上述两点预测,试确定b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
1
2
≤2x≤2},B={x|x≥a}.
(1)若a=0时.求A∩B,A∪B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
a-x
10+x
,其定义域为[-9,9],且在定义域上是奇函数,a∈R
(1)求a的值;
(2)判断函数f(x)的单调性,并用函数单调性定义证明你的结论;
(3)若函数g(x)=|f(x)+1|-m有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较大小sin(cosα)与cos(sinα)(其中0<α<
π
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足有且仅有一个正方形,其四个顶点均在曲线y=x3+ax上,求该正方形的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论不正确的是(  )
A、sin2>0
B、cos200°<0
C、tan(-2)<0
D、tan200°>0

查看答案和解析>>

同步练习册答案