精英家教网 > 高中数学 > 题目详情
(本小题15分)已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,
在(-∞,-2)上为减函数.
(1)求f(x)的表达式;
(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;
(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.
(1)f(x)=(1+x)2-ln(1+x)2.(2)需m>e2-2;
(3)存在这样的实数b,当2-2ln2<b≤3-2ln3时满足条件.
本试题主要是考查了函数单调性与导数的关系和函数奇偶性以及函数与不等式的关系的综合运用。
(1)求解函数的导数 f′(x)=2(1+x)-
=2·,
那么依题意f(x)在(-2,-1)上是增函数,在(-∞,-2)上为减函数.∴x=-2时,f(x)有极小值,∴f′(-2)=0.从而得到解析式。
(2)由于f′(x)=2(1+x)-=,易证函数在上单调递减,
因此若使原不等式恒成立只需求解其最大值m>e2-2即可.
(3)若存在实数b使得条件成立,
方程f(x)=x2+x+b即为x-b+1-ln(1+x)2=0,
要使方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,只需g(x)=0在区间[0,1]和[1,2]上各有一个实根,于是有2-2ln2<b≤3-2ln3,
故存在这样的实数b,当2-2ln2<b≤3-2ln3时满足条件.
解 (1)∵f′(x)=2(1+x)-
=2·,
依题意f(x)在(-2,-1)上是增函数,在(-∞,-2)上为减函数.∴x=-2时,f(x)有极小值,∴f′(-2)=0.
代入方程解得a=1,
故f(x)=(1+x)2-ln(1+x)2.
(2)由于f′(x)=2(1+x)-=,
令f′(x)=0,得x1=0,x2=-2.
(由于x∈,故x2=-2舍去),
易证函数在上单调递减,
在[0,e-1]上单调递增,
且f()=+2,f(e-1)=e2-2>+2,
故当x∈时,f(x)max=e2-2,
因此若使原不等式恒成立只需m>e2-2即可.
(3)若存在实数b使得条件成立,
方程f(x)=x2+x+b
即为x-b+1-ln(1+x)2=0,
令g(x)=x-b+1-ln(1+x)2,
则g′(x)=1-=,
令g′(x)>0,得x<-1或x>1,
令g′(x)<0,得-1<x<1,
故g(x)在[0,1]上单调递减,在[1,2]上单调递增,要使方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,只需g(x)=0在区间[0,1]和[1,2]上各有一个实根,于是有2-2ln2<b≤3-2ln3,
故存在这样的实数b,当2-2ln2<b≤3-2ln3时满足条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数处的切线斜率为零.
(Ⅰ)求的值;
(Ⅱ)求证:在定义域内恒成立;
(Ⅲ) 若函数有最小值,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题8分)设
(1)当时,求在区间上的最值;
(2)若上存在单调递增区间,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处有极值
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数的导函数。
(1)若,不等式恒成立,求a的取值范围;
(2)解关于x的方程
(3)设函数,求时的最小值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(I)当时,求函数的图象在点A(0,)处的切线方程;
(II)讨论函数的单调性;
(Ⅲ)是否存在实数,使时恒成立?若存在,求出实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数在[1,3]上是减函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=(x-3)ex的单调递增区间是
A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)

查看答案和解析>>

同步练习册答案