精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

【答案】1;(2

【解析】

1)对函数进行求导得,再利用导数的几何意义得,从而得到关于的方程,解方程即可得到答案;

(2)当时,,将函数可化为,则,从而将问题转化为有解,再构造函数,利用导数研究函数的值域,从而得到的取值范围.

1)当时,

解得

时,,此时直线恰为切线,故舍去,

所以.

2)当时,,设

,则

故函数可化为.

,可得

的单调递减区间为,单调递增区间为

所以的最小值为

此时,函数的的值域为

问题转化为当时,有解,

,得.

,则

的单调递减区间为,单调递增区间为

所以的最小值为

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】母线长为,底面半径为的圆锥内有一球,与圆锥的侧面、底面都相切,现放入一些小球,小球与圆锥底面、侧面、球都相切,这样的小球最多可放入__________个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,边上异于端点的动点,于点,将矩形沿折叠至处,使面.分别为的中点.

1)证明://面

2)设,当x为何值时,四面体的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=fx)和y=gx)在[-22]的图像如图所示,给出下列四个命题:

①方程f[gx]=0有且仅有6个根

②方程g[fx]=0有且仅有3个根

③方程f[fx]=0有且仅有5个根

④方程g[gx]=0有且仅有4个根

其中正确的命题是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知有且仅有3个零点,下列结论正确的是(

A.上存在,,满足

B.有且仅有1个最小值点

C.单调递增

D.的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的右焦点作直线,且直线与双曲线的一条渐近线垂直,垂足为,直线与另一条渐近线交于点,已知为坐标原点,若的内切圆的半径为,则双曲线的离心率为(

A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数处的切线过点,求的方程;

2)若且函数有两个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等,劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,的面积.将,称为基尼系数.对于下列说法:

越小,则国民分配越公平;

②设劳伦茨曲线对应的函数为,则对,均有

③若某国家某年的劳伦茨曲线近似为,则

其中正确的是:(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步练习册答案