精英家教网 > 高中数学 > 题目详情

已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).
(1)求函数f(x)的表达式,并求其定义域;
(2)当a=时,求函数f(x)的值域.

(1)x∈[0,a],(a>0)
(2)[]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线处切线的斜率;
(2)求的单调区间;
(3)当时,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)画出的简图;
(2)若方程有三个不等实根,求k值的集合;
(3)如果时,函数的图象总在直线的下方,试求出k值的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).
(1)求g(x)的解析式;
(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-1,g(x)=
(1)求f[g(2)]和g[f(2)]的值;
(2)求f[g(x)]和g[f(x)]的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),
当0≤x≤1时,f(x)=x.
(1)求f(3)的值;
(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时函数取得极小值,求a的值;(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是偶函数.
(1)求的值;
(2)设,若函数的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案