精英家教网 > 高中数学 > 题目详情
(2012•虹口区一模)过圆(x-1)2+(y-3)2=25内的点
1,0
的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积等于
40
40
分析:由圆的方程找出圆心坐标和半径r,连接圆心与点(1,0),利用垂径定理的逆定理最长的弦为过(1,0)的直径,最短的弦为与直径垂直的弦,由圆心与(1,0)的距离d,即弦心距及圆的半径r,勾股定理及垂径定理求出最短的弦长,再由直径与最短的弦长垂直,利用直径与最短弦长乘积的一半即可求出四边形ABCD的面积.
解答:解:由圆的方程(x-1)2+(y-3)2=25,得到圆心坐标为(1,3),半径r=5,
∵过(1,0)最长的弦为直径,即AC=10,且(1,0)与(1,3)的距离d=
(1-1)2+(0-3)2
=3,
∴最短的弦长BD=2
r2-d2
=8,
又AC⊥BD,
则四边形ABCD的面积S=
1
2
×10×8=40.
故答案为:40
点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,两点间的距离公式,垂径定理,勾股定理,以及对角线垂直的四边形面积求法,其中根据题意得出最长的弦长与最短的弦长是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知向量
m
=(sinx,1),
n
=(
3
cosx,
1
2
),函数f(x)=(
m
+
n
)•
m

(1)求函数f(x)的最小正周期;
(2)若a,b,c是△ABC的内角A,B,C的对边,a=2
3
,c=2
2
,且f(A)是函数f(x)在(0,
π
2
]上的最大值,求:角A,角C及b边的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知函数f(x)=sin(ωx+
π
4
)
(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移?个单位长度(0<?<
π
2
)
所得图象关于y轴对称,则?=
π
8
π
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知集合M=
1,2,3,4
N=
1,3,5,7
,集合P=M∩N,则集合P的子集共有
4
4
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知双曲线
x2
4
-
y2
12
=1
的左、右焦点分别为F1,F2,P在双曲线上,且∠F1PF2=90°,则点P到x轴的距离等于
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区一模)已知函数f(x)=loga
1-m(x-1)
x-2
(a>0,a≠1).
(1)若m=-1时,判断函数f(x)在
2,+∞)
上的单调性,并说明理由;
(2)若对于定义域内一切x,f(1+x)+f(1-x)=0恒成立,求实数m的值;
(3)在(2)的条件下,当x∈
b,a
时,f(x)的取值恰为
1,+∞
,求实数a,b的值.

查看答案和解析>>

同步练习册答案