精英家教网 > 高中数学 > 题目详情
1.函数f(x)=ln(-x2+2x+3)的单调减区间为(1,3).

分析 由二次函数和对数函数的单调性,结合函数的定义域可得.

解答 解:由-x2+2x+3>0可得-1<x<3,
由二次函数单调性可得t=-x2+2x+3在(1,+∞)单调递减,
由复合函数单调性可得f(x)=ln(-x2+2x+3)的单调减区间为(1,3)
故答案为:(1,3)

点评 本题考查对数函数和二次函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知曲线C1的极坐标方程为ρ2+2ρcosθ-3=0,直线C2的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=k+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),若两曲线有公共点,则k的取值范围是(  )
A.k∈RB.k>4C.k<-4D.-4≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列五个命题:
①命题?x∈R,cosx>0的否定是?x∈R,cosx≤0;
②函数$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的单调递增区间是(-∞,0);
③已知命题p:?x∈R,sin(π-x)=sinx;命题q:α,β均是第一象限的角,且α>β,则sinα>sinβ,则p∧?q是真命题;
④定义在R上的函数f(x)对于任意x的都有$f(x-2)=-\frac{4}{f(x)}$,则f(x)为周期函数;
⑤命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题是真命题.
则其正确的命题为①③④.(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(理) 已知数列{an}的前n项和为Sn,且an=$\frac{1}{(n+1)(n+2)}$,若Sn<t对任意n∈N*都成立,则t的取值范围为$t≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知不等式x(x+a)≤b的解集是{x|0≤x≤1},那么a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设直线l1:2x-my-1=0,l2:(m-1)x-y+1=0.若l1∥l2,则m的值为(  )
A.2B.-1C.2或-1D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题P:?x∈N,x∈z的否定为(  )
A.?x0∈N,x0∈ZB.?x0∈N,x0∉ZC.?x0∉N,x0∈ZD.?x0∉N,x0∉Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.按要求作答:若A(-2,3),B(3,-2),C($\frac{1}{2}$,m)三点共线,求:
(1)m的值;
(2)直线AC的方程(要求写成一般式).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M:x2+y2-4y+3=0,Q是x轴上动点,QA、QB分别切圆M于A、B两点,
(1)若|AB|=$\frac{4\sqrt{2}}{3}$,求直线MQ的方程;
(2)求四边形QAMB面积的最小值.

查看答案和解析>>

同步练习册答案