精英家教网 > 高中数学 > 题目详情

【题目】半正多面体(semiregular solid) 亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为(

A.B.C.D.

【答案】D

【解析】

根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.

如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,

该几何体的体积为

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在创建国家级卫生城(简称创卫)的过程中,相关部门需了解市民对创卫工作的满意程度,若市民满意指数不低于0.8(注:满意指数),创卫工作按原方案继续实施,否则需进一步整改.为此该部门随机调查了100位市民,根据这100位市民给创卫工作的满意程度评分,按以下区间:分为六组,得到如图频率分布直方图:

1)为了解部分市民给创卫工作评分较低的原因,该部门从评分低于60分的市民中随机选取2人进行座谈,求这2人所给的评分恰好都在的概率;

2)根据你所学的统计知识,判断该市创卫工作是否需要进一步整改,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在,使得对任意恒成立,则函数上有下界,其中为函数的一个下界;若存在,使得对任意恒成立,则函数上有上界,其中为函数的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列四个结论:

1不是函数的一个下界;②函数有下界,无上界;

③函数有上界,无下界;④函数有界.

其中所有正确结论的编号为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据我市房地产数据显示,今年我市前5个月新建住宅销售均价逐月上升,为抑制房价过快上涨,政府从6月份开始推出限价房等宏观调控措施,6月份开始房价得到很好的抑制,房价回落.今年前10个月的房价均价如表:

月份x

1

2

3

4

5

6

7

8

9

10

均价y(万元/平方米)

0.83

0.95

1.00

1.05

1.17

1.15

1.10

1.06

0.98

0.94

地产数据研究发现,从1月份至5月份的各月均价y(万元/平方米)与x之间具有正线性相关关系,从6月份至10月份的各月均价y(万元/平方米)与x之间具有负线性相关关系.

1)若政府不调控,根据前5个月的数据,求y关于x的回归直线方程,并预测12月份的房地产均价.(精确到0.01

2)政府调控后,从6月份至10月份的数据可得到yx的回归直线方程为:.由此预测政府调控后12月份的房地产均价.说明政府调控的必要性.(精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方形SG1G2G3中,EF分别是G1G2G2G3的中点,DEF的中点,现在沿SESFEF把这个正方形折成一个四面体,使G1G2G3三点重合,重合后的点记为G,那么,在四面体SEFG中必有(

A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面

C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2xa|+|xa+1|

1)当a4时,求解不等式fx≥8

2)已知关于x的不等式fxR上恒成立,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求实数的取值范围;

2)设的两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与上下顶点构成直角三角形,以椭圆E的长轴为直径的圆与直线相切.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)为椭圆上不同的三点,为坐标原点,若,试问:的面积是否为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案