精英家教网 > 高中数学 > 题目详情
已知离散型随机变量的分布列为

0
1
2
3

0.1


0.1
,则______________________.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲、乙两人各射击一次,击中目标的概率分别是假设两人射击是否击中目标,相互
之间没有影响;每人各次射击是否击中目标,相互之间也没有影响
(1)甲射击3次,至少1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?
⑶设甲连续射击3次,用表示甲击中目标时射击的次数,求的数学期望.(结果可以用分数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲有一只放有a本《周易》,b本《万年历》,c本《吴从纪要》的书箱,且a+b+c ="6" (a,b,cN),乙也有一只放有3本《周易》,2本《万年历》,1《吴从纪要》的书箱,两人各自从自己的箱子中任取一本书(由于每本书厚薄、大小相近,每本书被抽取出的可能性一样),规定:当两本书同名时甲将被派出去完成某项任务,否则乙去.
(1) 用a、b、c表示甲去的概率;
(2) 若又规定:当甲取《周易》,《万年历》,《吴从纪要》而去的得分分别为1分、2分、3分,否则得0分,求甲得分的期望的最大值及此时a、b、c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

车站每天8∶00~9∶00,9∶00~10∶00都恰有一辆客车到站,8∶00~9∶00到站的客车A可能在8∶10,8∶30,8∶50到站,其概率依次为;9∶00~10∶00到站的客车B可能在9∶10,9∶30,9∶50到站,其概率依次为.
(1)旅客甲8∶00到站,设他的候车时间为,求的分布列和
(2)旅客乙8∶20到站,设他的候车时间为,求的分布列和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
重庆电视台的一个智力游戏节目中,有一道将中国四大名著A、B、C、D与它们的作者
连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线.每连对
一个得3分,连错得分,一名观众随意连线,将他的得分记作ξ.
(Ⅰ)求该观众得分ξ为正数的概率;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛掷两个骰子,取其中一个的点数为点P的横坐标,另一个的点数为点P的纵坐标,求连续抛掷这两个骰子三次,点P在圆内的次数的均值为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.
(Ⅰ)写出的分布列;
(Ⅱ)求数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从集合的所有非空子集中,等可能地取出一个;记所取出的非空子集
的元素个数为,则的数学期望E=           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

随机变量的分布列如下:其中成等差数列,若,则的值为                    








 

查看答案和解析>>

同步练习册答案