椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点. (Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
科目:高中数学 来源: 题型:
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出的坐标及定值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2013届山东冠县武训高中高二下第二次模块考试文科数学试卷(解析版) 题型:解答题
已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.
(1)求椭圆标准方程;
(2)设点,且,求直线方程.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河北省高三12月月考数学理卷 题型:解答题
已知椭圆的方程为,它的一个焦点与抛物线的焦点重合,离心率,过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点.
(Ⅰ)求椭圆的标准方程; (Ⅱ)设点,且,求直线的方程;
查看答案和解析>>
科目:高中数学 来源:2010-2011学年云南省高三1月月考数学理卷 题型:解答题
((本小题满分12分)
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com