精英家教网 > 高中数学 > 题目详情
已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k为正常数).
(1)设u=x1x2,求u的取值范围;
(2)求证:当k≥1时不等式对任意(x1,x2)∈D恒成立;
(3)求使不等式对任意(x1,x2)∈D恒成立的k2的范围.
【答案】分析:(1)利用基本不等式,其中和为定值,积有最大值;
(2)结合(1)中的范围直接将左边展开,利用u在上单调递增即可,或者作差法比较;
(3)结合(2)将(3)转化为求使恒成立的k的范围,利用函数的单调性解决,或者作差法求解.
解答:解:(1),当且仅当时等号成立,
故u的取值范围为
(2)解法一(函数法)=
,又k≥1,k2-1≥0,
∴在上是增函数
所以
=
即当k≥1时不等式成立.
解法二(不等式证明的作差比较法)

=
=
=
将k2-4x1x2=(x1-x22代入得:

=
∵(x1-x22≥0,k≥1时4-k2x1x2-4k2=4(1-k2)-k2x1x2<0,

即当k≥1时不等式成立.
(3)解法一(函数法)
=

即求使恒成立的k的范围.
由(2)知,要使
对任意(x1,x2)∈D恒成立,必有0<k<1,
因此1-k2>0,
∴函数上递减,在上递增,
要使函数f(u)在上恒有,必有,即k4+16k2-16≤0,
解得
解法二(不等式证明的作差比较法)
由(2)可知=
要不等式恒成立,必须4-k2x1x2-4k2≥0恒成立
恒成立
,即k4+16k2-16≤0,
解得
因此不等式恒成立的k2的范围是
点评:本题考查不等式的综合应用,以及利用转化思想、函数思想转化为函数问题利用函数的单调性解决不等式问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k为正常数).
(1)设u=x1x2,求u的取值范围;
(2)求证:当k≥1时不等式(
1
x1
-x1)(
1
x2
-x2)≤(
k
2
-
2
k
)2
对任意(x1,x2)∈D恒成立;
(3)求使不等式(
1
x1
-x1)(
1
x2
-x2)≥(
k
2
-
2
k
)2
对任意(x1,x2)∈D恒成立的k2的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合D={( x1,x2)|x 1>0,x 2>0,x1+x2=k },其中k为正常数
(1)若k=2,且u=x1?x2,求u的取值范围
(2)若k=2,且y=(
1
x1
-x1)(
1
x2
-x2)
,求y的取值范围.
(3)设y1=(
1
x1
-x1)(
1
x2
-x2)
y2=(
k
2
-
2
k
)2
,探究判断y1和y2的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(ⅱ)设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?说明理由;
(Ⅲ)记I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(Ⅲ)记I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源:湖南省长沙市一中2010届高三上学期第二次月考(理) 题型:解答题

 已知集合D = {(x1x2)|x1>0,x2>0,x1 + x2 = kk为正常数}.

(Ⅰ)设u = x1x2,(x1x2) ∈D,u的取值范围T;

(Ⅱ)求证:当k≥1时,不等式对任意(x1x2) ∈D恒成立;

(Ⅲ)求使不等式对任意(x1x2) ∈D恒成立的k的范围.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案