精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2sinx•cosx+2cos2x-1,
(1)求函数f(x)的单调递增区间.
(2)求函数f(x)的最大值及f(x)取最大值时x的集合.

分析 (1)由条件利用两角和差的正弦公式,化简函数的解析式,再利用正弦函数的单调性求得f(x)的单调递增区间.
(2)根据函数f(x)的解析式,再根据正弦函数的最值,求得函数f(x)的最大值及f(x)取最大值时x的集合.

解答 解:(1)函数f(x)=2sinx•cosx+2cos2x-1=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,可得函数的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
(2)由f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),可得当2x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$,k∈Z时,函数f(x)取得最大值为$\sqrt{2}$,
此时,x取值的集合为{x|x=kπ+$\frac{π}{8}$,k∈Z}.

点评 本题主要考查两角和差的正弦公式,正弦函数的单调性和最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=sin(ωx+φ)的部分图象如图,则f($\frac{π}{2}$)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).
(Ⅰ)当θ=$\frac{2π}{3}$ 时,求点P距地面的高度PQ;
(Ⅱ)设y=tan∠MPN,写出用θ表示y的函数关系式,并求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的首项为a(a≠0),前n项和为Sn,且Sn+1=t•Sn+a(t≠0).设bn=Sn+1,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当t=1时,若对任意n∈N+,|bn|≥|b3|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示韦恩图I、Ⅱ、Ⅲ、Ⅳ区中,Ⅳ区阴影可由(  )表示.
A.A∩BB.ABC.BAD.(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=log3x对任意正数x,y都成立的结论有(  )
①f(x+y)=f(x)f(y)
②f(x+y)=f(x)+f(y)
③f(xy)=f(x)f(y)
④f(xy)=f(x)+f(y)
A.B.C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+\frac{3}{4},}&{x≥2}\\{lo{g}_{2}x,}&{0<x<2}\end{array}\right.$,若关于x的方程f(x)-k=0有且只有1个根,则实数k的取值范围是k≤$\frac{3}{4}$或k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等比数列{an}中,a1,a5是关于x方程x2-bx+c=0的两个根,其中点(c,b)在直线y=x+1上,且c=$\int_0^3$t2dt,则a3的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\sqrt{3}$sinx-cosx-2(x>0)的值域是[-4,0].

查看答案和解析>>

同步练习册答案