【题目】已知数列{an}是等差数列,{bn}是各项均为正数的等比数列,满足a1=b1=1,b2﹣a3=2b3 , a3﹣2b2=﹣1
(1)求数列{an}和{bn}的通项公式
(2)设cn=an+bn , n∈N* , 求数列{cn}的前n项和Sn .
【答案】
(1)解:设数列{an}是公差为d的等差数列,
{bn}是各项均为正数且公比为q的等比数列,
由a1=b1=1,b2﹣a3=2b3,a3﹣2b2=﹣1,
可得q﹣(1+2d)=2q2,1+2d﹣2q=﹣1,
解得d=﹣ ,q= ,
可得an=a1+(n﹣1)d=1﹣ (n﹣1)= (3﹣n);
bn=b1qn﹣1=( )n﹣1,n∈N*
(2)解:cn=an+bn= (3﹣n)+( )n﹣1,
可得数列{cn}的前n项和Sn= n(1+ )+
=﹣ n2+ n﹣ +2
【解析】(1)设数列{an}是公差为d的等差数列,{bn}是各项均为正数且公比为q的等比数列,运用等差数列和等比数列的通项公式,解方程可得公差和公比,即可得到所求通项公式;(2)求出cn=an+bn= (3﹣n)+( )n﹣1 , 运用数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,化简整理即可得到所求和.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知A,B是单位圆上的两点,O为圆心,且∠AOB=90°,MN是圆O的一条直径,点C在圆内,且满足 =λ +(1﹣λ) (λ∈R),则 的最小值为( )
A.﹣
B.﹣
C.﹣
D.﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 且a3+a5=a4+7,S10=100.
(1)求{an}的通项公式;
(2)求满足不等式Sn<3an﹣2的n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn= nan+1 , 其中a1=1
(1)求数列{an}的通项公式;
(2)若bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边为a,b,c,角A,B,C的大小成等差数列,向量 =(sin ,cos ),=(cos ,﹣ cos ),f(A)= ,
(1)若f(A)=﹣ ,试判断三角形ABC的形状;
(2)若b= ,a= ,求边c及S△ABC .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=2 ,AA1= ,AB=2,点D在棱B1C1上,且B1C1=4B1D (Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B﹣A1D﹣C的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com