精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是等差数列,{bn}是各项均为正数的等比数列,满足a1=b1=1,b2﹣a3=2b3 , a3﹣2b2=﹣1
(1)求数列{an}和{bn}的通项公式
(2)设cn=an+bn , n∈N* , 求数列{cn}的前n项和Sn

【答案】
(1)解:设数列{an}是公差为d的等差数列,

{bn}是各项均为正数且公比为q的等比数列,

由a1=b1=1,b2﹣a3=2b3,a3﹣2b2=﹣1,

可得q﹣(1+2d)=2q2,1+2d﹣2q=﹣1,

解得d=﹣ ,q=

可得an=a1+(n﹣1)d=1﹣ (n﹣1)= (3﹣n);

bn=b1qn1=( n1,n∈N*


(2)解:cn=an+bn= (3﹣n)+( n1

可得数列{cn}的前n项和Sn= n(1+ )+

=﹣ n2+ n﹣ +2


【解析】(1)设数列{an}是公差为d的等差数列,{bn}是各项均为正数且公比为q的等比数列,运用等差数列和等比数列的通项公式,解方程可得公差和公比,即可得到所求通项公式;(2)求出cn=an+bn= (3﹣n)+( n1 , 运用数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,化简整理即可得到所求和.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A,B是单位圆上的两点,O为圆心,且∠AOB=90°,MN是圆O的一条直径,点C在圆内,且满足 +(1﹣λ) (λ∈R),则 的最小值为(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 且a3+a5=a4+7,S10=100.
(1)求{an}的通项公式;
(2)求满足不等式Sn<3an﹣2的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+(﹣1)nan=3n﹣1,则{an}的前60项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn= nan+1 , 其中a1=1
(1)求数列{an}的通项公式;
(2)若bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a2+c2=b2+ ac. (Ⅰ)求∠B的大小;
(Ⅱ)求 cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边为a,b,c,角A,B,C的大小成等差数列,向量 =(sin ,cos ),=(cos ,﹣ cos ),f(A)=
(1)若f(A)=﹣ ,试判断三角形ABC的形状;
(2)若b= ,a= ,求边c及SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=2 ,AA1= ,AB=2,点D在棱B1C1上,且B1C1=4B1D (Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B﹣A1D﹣C的大小.

查看答案和解析>>

同步练习册答案