精英家教网 > 高中数学 > 题目详情

【题目】已知正四面体的表面积为为棱的中点,球为该正四面体的外接球,则过点的平面被球所截得的截面面积的最小值为( )

A.B.C.D.

【答案】B

【解析】

本题首先可以将正四面体放入正方体中,然后借助正方体的性质得出外接球的球心,通过正四面体的表面积为即可计算出长,从而求得外接球的半径,利用截面圆的性质求得最小截面圆的半径径,问题得解。

如图所示,

将正四面体放入正方体中,则正方体的中心即为其外接球的球心

因为正四面体的表面积为

所以

因为是正三角形,所以

设正方体的边长为,则:,解得:

所以正四面体的外接球直径为

设过点的截面圆半径为,球心到截面圆的距离为,正四面体的外接球半径为

由截面圆的性质可得:

最大时,最小,此时对应截面圆的面积最小.

,所以的最大值为,此时最小为

所以过点的最小截面圆的面积为,故选B。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知,平面平面的中点,连接.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,.

(1)证明:

(2)若,求二面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆.以极点为原点,极轴为轴正半轴建立直角坐标系,直线经过点且倾斜角为.

求圆的直角坐标方程和直线的参数方程;

已知直线与圆交与,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,半圆弧所在平面与平面垂直,且上异于的点,.

(1)求证:平面

(2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程及直线的直角坐标方程;

(2)已知点为曲线上的动点,当点到直线的距离最大时,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形纸片中,,在线段上取一点,沿着过点的直线将矩形右下角折起,使得右下角顶点恰好落在矩形的左边边上.设折痕所在直线与交于点,记折痕的长度为,翻折角

(1)探求的函数关系,推导出用表示的函数表达式;

(2)设的长为,求的取值范围;

(3)确定点在何处时,翻折后重叠部分的图形面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.

(1)求椭圆的方程;

(2)过椭圆的右焦点作直线交椭圆两点,交轴于点,若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,点分别为的中点.

1)求证:平面平面EFD

2)求点到平面的距离.

查看答案和解析>>

同步练习册答案