精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:,且对一切,均有.

1)求证:数列为等差数列,并求数列的通项公式;

2)若,求数列的前n项和

3)设),记数列的前n项和为,问:是否存在正整数,对一切,均有恒成立.若存在,求出所有正整数的值;若不存在,请说明理由.

【答案】1)证明见解析; 23)存在,23

【解析】

(1)原式两边同时除以再根据等差数列定义证明即可.

(2)代入(1)中求得的数列的通项公式,再利用数列前项积与通项的方法求解即可.

(3)根据(2)中的方法求得关于的解析式,再将代入,再根据正整数,分情况讨论的取值,的关系式看成函数进行单调性的分析即可.

(1)证明:由,,两边除以,得

,即,

所以,数列为等差数列,所以,

(2),(1),

时有,

时有,,两式相除有.

, 也成立.,

(3)由题,(2).

因为对一切,均有恒成立,

所以当,.

,,,,故不成立.

,,

,,,,.

且当,. .故成立.

,,,,

,.

又当, ,,故成立.

,,

,.

上是增函数,.所以.

,故不成立.

综上所述, 的取值为23

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某居民最近连续几年的月用水量进行统计,得到该居民月用水量 (单位:吨)的频率分布直方图,如图一.

(1)求的值,并根据频率分布直方图估计该居民月平均用水量

2)已知该居民月用水量与月平均气温(单位:℃)的关系可用回归直线模拟.2019年当地月平均气温统计图如图二,把2019年该居民月用水量高于和低于的月份作为两层,用分层抽样的方法选取5个月,再从这5个月中随机抽取2个月,求这2个月中该居民恰有1个月用水量超过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左,右焦点分别为,点P为双曲线C右支上异于顶点的一点,的内切圆与x轴切于点,则a的值为______,若直线经过线段的中点且垂直于线段,则双曲线C的方程为________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中华文化博大精深,源远流长,每年都有大批外国游客入境观光旅游或者学习等,下面是年至年三个不同年龄段外国入境游客数量的柱状图:

下面说法错误的是:(

A.年至年外国入境游客中,岁年龄段人数明显较多

B.年以来,三个年龄段的外国入境游客数量都在逐年增加

C.年以来,岁外国入境游客增加数量大于岁外国入境游客增加数量

D.年,岁外国入境游客增长率大于岁外国入境游客增长率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点O,焦点在x轴上,椭圆的两焦点与椭圆短轴的一个端点构成等边三角形,右焦点到右顶点的距离为1.

1)求椭圆C的标准方程;

2)是否存在与椭圆C交于AB两点的直线l,使得成立?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五行是中国古代哲学的一种系统观,广泛用于中医、堪舆、命理、相术和占卜等方面.古人把宇宙万物划分为五种性质的事物,也即分成木、火、土、金、水五大类,并称它们为五行”.中国古代哲学家用五行理论来说明世界万物的形成及其相互关系,创造了五行相生相克理论.相生,是指两类五行属性不同的事物之间存在相互帮助,相互促进的关系,具体是:木生火,火生土,土生金,金生水,水生木.相克,是指两类五行属性不同的事物之间是相互克制的关系,具体是:木克土,土克水,水克火、火克金、金克木.现从分别标有木,火,土,金,水的根竹签中随机抽取根,则所抽取的根竹签上的五行属性相克的概率为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)设,若对任意的,存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r﹣1项起往后依次成公比为2的等比数列,则称数列{an}“r关联数列

1)若数列{an}“6关联数列,求数列{an}的通项公式;

2)在(1)的条件下,求出Sn,并证明:对任意n∈N*anSn≥a6S6

3)已知数列{an}“r关联数列,且a1=﹣10,是否存在正整数kmmk),使得a1+a2+…+ak1+ak=a1+a2+…+am1+am?若存在,求出所有的km值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两队参加听歌猜歌名游戏,每队.随机播放一首歌曲, 参赛者开始抢答,每人只有一次抢答机会,答对者为本队赢得一分,答错得零分, 假设甲队中每人答对的概率均为,乙队中人答对的概率分别为,且各人回答正确与否相互之间没有影响.

(1)若比赛前随机从两队的个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;

(2)表示甲队的总得分,求随机变量的分布列和数学期望;

(3)求两队得分之和大于4的概率.

查看答案和解析>>

同步练习册答案