精英家教网 > 高中数学 > 题目详情
某简谐运动的图象对应的函数函数解析式为:f(x)=3sin(
x
2
+
π
6
)-1

(1)指出f(x)的周期、振幅、频率、相位、初相;
(2)用五点法画出它在一个周期内的闭区间上的图象;
(3)求函数图象的对称中心和对称轴.
(1)∵f(x)=3sin(
x
2
+
π
6
)-1,
∴其周期T=4π,振幅为3,频率为
1
、相位是
x
2
+
π
6
,初相为
π
6

(2)分别令
x
2
+
π
6
=0,
π
2
,π,
2
,2π,得到相应的x的值,列表如下:

作图象如下:

(3)由
x
2
+
π
6
=kπ+
π
2
(k∈Z)得:x=2kπ+
3
(k∈Z),
∴其对称轴方程为:x=2kπ+
3
(k∈Z);
x
2
+
π
6
=kπ(k∈Z)得:x=2kπ-
π
3
(k∈Z),
∴函数f(x)=3sin(
x
2
+
π
6
)-1的图象的对称中心为(2kπ-
π
3
,-1)(k∈Z).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=sin(2x+ϕ)(-π<ϕ<0),y=f(x)图象的一条对称轴是直线x=
π
8

(Ⅰ)求ϕ;
(Ⅱ)求函数y=f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=2tan(2x-
π
4
)
的对称中心为(  )
A.(
π
4
+
4
,0)(k∈Z)
B.(
π
8
+
4
,0)(k∈Z)
C.(
π
4
+
2
,0)(k∈Z)
D.(
π
8
+
2
,0)(k∈Z)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<
π
2
)
的一段图象如图5所示:将y=f(x)的图象向右平移m(m>0)个单位,可得到函数y=g(x)的图象,且图象关于原点对称,g(
π
2013
)>0

(1)求A、ω、φ的值;
(2)求m的最小值,并写出g(x)的表达式;
(3)若关于x的函数y=g(
tx
2
)
在区间[-
π
3
π
4
]
上最小值为-2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

要得到函数y=3sin(2x+
π
3
)的图象,只要把函数y=3sin2x图象(  )
A.向右平移
π
3
个单位
B.向左平移
π
3
个单位
C.向右平移
π
6
个单位
D.向左平移
π
6
个单位

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(Ⅰ)求ω的值及函数f(x)的值域;
(Ⅱ)若f(x0)=
8
3
5
,且x0∈(-
10
3
2
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数f(x)=2sin(2x+
π
3
)给出下列结论:
①图象关于原点中心对称;
②图象关于直线x=
π
12
轴对称;
③图象可由函数y=2sin2x的图象向左平移
π
3
个单位得到;
④图象向左平移
π
12
个单位,即得到函数y=2cos2x的图象.
其中正确结论的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为了得到函数y=cos(2x-
π
3
)
的图象,只需将函数y=cos2x的图象(  )
A.向左平移
π
6
个单位长度
B.向右平移
π
6
个单位长度
C.向左平移
π
3
个单位长度
D.向右平移
π
3
个单位长度

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为锐角,且sin,则sin的值为________.

查看答案和解析>>

同步练习册答案