精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.
分析:(Ⅰ)要证AM∥平面BDE,直线证明直线AM平行平面BDE内的直线OE即可,也可以利用空间直角坐标系,求出向量
AM
,在平面BDE内求出向量
NE
,证明二者共线,说明AM∥平面BDE,
(Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS,说明∠BSA是二面角A-DF-B的平面角,然后求二面角A-DF-B的大小;也可以建立空间直角坐标系,求出
NE
DB
=0
NE
NF
=0
说明
NE
是平面DFB的法向量,求出平面DAF的法向量
AB
=(-
2
,0,0)
,然后利用数量积求解即可.
解答:精英家教网解:方法一
(Ⅰ)记AC与BD的交点为O,连接OE,
∵O、M分别是AC、EF的中点,ACEF是矩形,
∴四边形AOEM是平行四边形,
∴AM∥OE
∵OE?平面BDE,AM?平面BDE,
∴AM∥平面BDE
精英家教网(Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS,
∵AB⊥AF,AB⊥AD,AD∩AF=A,
∴AB⊥平面ADF,
∴AS是BS在平面ADF上的射影,
由三垂线定理得BS⊥DF
∴∠BSA是二面角A-DF-B的平面角
在Rt△ASB中,AS=
6
3
,AB=
2,

tan∠ASB=
3
,∠ASB=60°

∴二面角A-DF-B的大小为60°
精英家教网方法二
(Ⅰ)建立如图所示的空间直角坐标系
设AC∩BD=N,连接NE,
则点N、E的坐标分别是(
2
2
2
2
,0)
、(0,0,1),
NE
=(-
2
2
,-
2
2
,1)

又点A、M的坐标分别是
2
2
,0
)、(
2
2
2
2
,1)

AM
=(-
2
2
,-
2
2
,1)

NE
=
AM
且NE与AM不共线,
∴NE∥AM
又∵NE?平面BDE,AM?平面BDE,
∴AM∥平面BDF
(Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A,
∴AB⊥平面ADF
AB
=(-
2
,0,0)
为平面DAF的法向量
NE
DB
=(-
2
2
,-
2
2
,1)
(-
2
2
,0)
=0,
NE
NF
=(-
2
2
,-
2
2
,1)
(
2
2
,0)
=0得
NE
DB
NE
NF
∴NE为平面BDF的法向量
∴cos<
AB,
NE
>=
1
2

AB,
NE
的夹角是60°
即所求二面角A-DF-B的大小是60°
点评:本题考查直线与平面平行,二面角的知识,考查空间想象能力,逻辑思维能力,是中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,过正方形中心O的直线MN分别交正方形的边AB,CD于M,N,则当
MN
BN
最小时,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求证:CM∥平面BDF;
(II)求异面直线CM与FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在线段AC上找一点P,使PF与AD所成的角为60°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.

查看答案和解析>>

同步练习册答案