精英家教网 > 高中数学 > 题目详情

某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.
(1)若角时,求该八边形的面积;
(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.

(1);(2),当时,八边形的面积取最大值.

解析试题分析:(1)先利用结合余弦定理确定正方形的边长,然后将八边形分为一个正方形与四个等腰三角形求面积,最后将面积相加得到八边形的面积;(2)利用得到角的取值范围,利用正弦定理求出正方形的边长(利用含的代数式表示),然后利用面积公式求出八边形的面积关于的三角函数,结合降幂公式、辅助角公式将三角函数解析式进行化简,最后求出相应函数在区间的最大值.
(1)由题可得正方形边长为

(2)显然,所以


,故
,此时.
考点:1.三角形的面积;2.二倍角;3.辅助角公式;4.三角函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=Asin(2x+θ),其中A≠0,θ∈(0,).

(1)若函数f(x)的图象过点E(-,1),F(),求函数f(x)的解析式;
(2)如图,点M,N是函数y=f(x)的图象在y轴两侧与x轴的两个相邻交点,函数图象上一点P(t,)满足·,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,角和角的终边分别与单位圆交于两点,(其中为第一象限点,为第二象限点)

(1)若点的横坐标是,点的纵坐标是,求的值;
(2)若, 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数相邻两个对称轴之间的距离是,且满足,
(1)求的单调递减区间;
(2)在钝角△ABC中,a、b、c分别为角A、B、C的对边,sinB=,求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)为偶函数,且函数图象的两相邻对称轴间的距离为
(1)求的值;
(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点,其中.
(1)当时,求向量的坐标;
(2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.
(1)求函数的解析式,并写出 的单调减区间;
(2)已知的内角分别是A,B,C,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面向量,函数
(1)当时,求函数的取值范围;
(2)当,且时,求的值.

查看答案和解析>>

同步练习册答案