精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

【答案】
(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,

∵AB∥CD,∴AB⊥PD,

又∵PA∩PD=P,且PA平面PAD,PD平面PAD,

∴AB⊥平面PAD,又AB平面PAB,

∴平面PAB⊥平面PAD;


(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,

由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,

在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,

设PA=AB=2a,则AD=

取AD中点O,BC中点E,连接PO、OE,

以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,

则:D( ),B( ),P(0,0, ),C( ).

设平面PBC的一个法向量为

,得 ,取y=1,得

∵AB⊥平面PAD,AD平面PAD,∴AB⊥AD,

又PD⊥PA,PA∩AB=A,

∴PD⊥平面PAB,则 为平面PAB的一个法向量,

∴cos< >= =

由图可知,二面角A﹣PB﹣C为钝角,

∴二面角A﹣PB﹣C的余弦值为


【解析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD; (2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得 为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.
【考点精析】根据题目的已知条件,利用平面与平面垂直的判定的相关知识可以得到问题的答案,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,a3+b3=2,证明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中, 是正三角形, 是直角三角形, ,.

(1)证明:平面平面;

(2)的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和公式为Sn=2n2-30n.

(1)求数列{an}的通项公式an;(2)求Sn的最小值及对应的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在 两个空白框中,可以分别填入(  )

A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体中,分别是的中点.

在直线上运动时,三棱锥体积不变;

在直线上运动时,始终与平面平行;

③平面平面

④连接正方体的任意的两个顶点形成一条直线,其中与棱所在直线异面的有条;

其中真命题的编号是_______________.(写出所有正确命题的编号)

查看答案和解析>>

同步练习册答案