精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线x轴交于不同的两点AB,曲线Γy轴交于点C

1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;

2)求证:ABC三点的圆过定点,并求出该定点的坐标.

【答案】(1)存在,(2)证明见解析,圆方程恒过定点

【解析】

1)将曲线Γ方程中的y0,得x2mx+2m0.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.

2)设过ABC的圆P的方程为(xa2+yb2r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.

由曲线Γ:yx2mx+2mmR),

y0,得x2mx+2m0

Ax10),Bx20),

则可得△=m28m0x1+x2mx1x22m

x0,得y2m,即C02m).

1)若存在以AB为直径的圆过点C,则,得

2m+4m20

所以m0.由△>0,得m0m8,所以

此时C0,﹣1),AB的中点M0)即圆心,半径r|CM|

故所求圆的方程为

2)设过ABC的圆P的方程为(xa2+yb2r2

满足

代入P

展开得(﹣x2y+2m+x2+y2y0

,即时方程恒成立,

∴圆P方程恒过定点(01)或

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求证:当时,函数上存在唯一的零点;

(Ⅱ)当时,若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着旅游观念的转变和旅游业的发展,国民在旅游休闲方面的投入不断增多,民众对旅游的需求也不断提高,安庆某社区居委会统计了2011至2015年每年春节期间外出旅游的家庭数,具体统计资料如表:

年份(x)

2011

2012

2013

2014

2015

家庭数(y)

6

10

16

22

26


(1)从这5年中随机抽取两年,求外出旅游的家庭至少有1年多于20个的概率;
(2)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程 ,并判断它们之间是正相关还是负相关;
(3)利用(2)中所求出的回归直线方程估计该社区2016年在春节期间外出旅游的家庭数.
参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程 (α为参数)
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标 ,判断点P与直线l的位置关系;
(2)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在同一半周期内的图象过点 ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.

(1)求的值;

(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线)上(如图所示),试判断点是否也落在曲线)上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn= ,n∈N* , 其中c为实数.
(1)若c=0,且b1 , b2 , b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数,其中为正实数.

(1)若函数处的切线斜率为2,求的值;

(2)求函数的单调区间;

(3)若函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的图象如图所示:

(1)求函数的解析式及其对称轴的方程;

(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元

1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;

2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?

查看答案和解析>>

同步练习册答案