精英家教网 > 高中数学 > 题目详情

【题目】国家放开计划生育政策,鼓励一对夫妇生育2个孩子.在某地区的100000对已经生育了一胎夫妇中,进行大数据统计得,有100对第一胎生育的是双胞胎或多胞胎,其余的均为单胞胎.在这99900对恰好生育一孩的夫妇中,男方、女方都愿意生育二孩的有50000对,男方愿意生育二孩女方不愿意生育二孩的有对,男方不愿意生育二孩女方愿意生育二孩的有对,其余情形有对,且.现用样本的频率来估计总体的概率.

(1)说明“其余情形”指何种具体情形,并求出的值;

(2)该地区为进一步鼓励生育二孩,实行贴补政策:凡第一胎生育了一孩的夫妇一次性贴补5000元,第一胎生育了双胞胎或多胞胎的夫妇只有一次性贴补15000元.第一胎已经生育了一孩再生育了二孩的夫妇一次性再贴补20000元.这种补贴政策直接提高了夫妇生育二孩的积极性:原先男方或女方中只有一方愿意生育二孩的夫妇现在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫妇仍然不愿意生育二孩.设为该地区的一对夫妇享受的生育贴补,求

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据题意中的分类的特点可得“其余情形”的含义,然后利用,可设,由题意求得后进而可得所求.(2)由题意得到原先的5种生育情况的频率,由题意可知随机变量的可能取值为15000,25000,5000,然后求出的每一个取值的概率,从而得到的分布列,最后可求得期望

(1)“其余情形”指一对夫妇中的男方、女方都不愿意生育二孩.

,可设

由已知得

所以

解得

所以

(2)一对夫妇中,原先的生育情况有以下5种:

第一胎生育的是双胞胎或多胞胎有100对,频率为

男方、女方都愿意生育二孩的有50000对,频率为

男方愿意生育二胎女方不愿意生育二胎的有30000对,频率为

男方不愿意生育二胎女方愿意生育二胎的也有10000对,频率为

其余情形即男方、女方都不愿意生育二孩的有9900对,频率为

由题意可知随机变量的可能取值为15000,25000,5000,

所以随机变量的概率分布表如下:

15000

25000

5000

所以(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,,当时,,则不等式的解集为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12已知函数

1若直线过点,并且与曲线相切,求直线的方程;

2设函数上有且只有一个零点,求的取值范围。其中为自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,直线过定点P(2,0),斜率为。当为何值时,直线与抛物线:

(1)只有一个公共点;

(2)有两个公共点;

(3)没有公共点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)过点的两条直线分别交抛物线于点,线段的中点分别为.如果直线的倾斜角互余,求证:直线经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为阿当数列”.

1)若数列阿当数列,且,求实数的取值范围;

2)是否存在首项为1的等差数列阿当数列,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.

3)已知等比数列的每一项均为正整数,且阿当数列,当数列不是阿当数列时,试判断数列是否为阿当数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,若,且满足关系式,则a+c的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过点并且与圆相外切,动圆圆心的轨迹为.

Ⅰ)求曲线的轨迹方程;

Ⅱ)过点的直线与轨迹交于两点,设直线,设点,直线,求证:直线经过定点.

查看答案和解析>>

同步练习册答案