精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为[-1,5],部分对应值如下表, 的导函数的图象如图所示,下列关于的命题:

-1

0

4

5

1

2

2

1

①函数的极大值点为0,4;

②函数在[0,2]上是减函数;

③如果当时, 的最大值是2,那么t的最大值为4;

④当1<a<2时,函数有4个零点.

其中正确命题的序号是__________

【答案】①②

【解析】试题分析: 由函数的导函数的图像知,函数的极大值点为,所以正确;

因为在上的导函数为负,所以函数上是减函数,所以正确;

由表中数据可得当时,函数取最大值2,若时,函数的最大值是2,那么,故的最大值为5,即错误;

知,因为极小值未知,所以无法判断函数有几个零点,故不正确.

综上所述,正确命题的个数为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a取值的集合(
A.{a|a≤2}
B.{a|﹣2<a<2}
C.{a|﹣2<a≤2}
D.{a|a≤﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)= ,存在一个正数b,使得f(x)的定义域和值域相同,则非零实数a的值为(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).记F(x)=2f(x)+g(x).
(1)求函数F(x)的零点;
(2)若关于x的方程F(x)﹣2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了了解树苗生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米).把这些高度列成了如下的频率分布表:

(1)在这批树苗中任取一棵,其高度不低于80厘米的概率大约是多少?

(2)这批树苗的平均高度大约是多少?(用各组的中间值代替各组数据的平均值)

(3)为了进一步获得研究资料,若从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组中的树苗组中的树苗同时被移出的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=8x与双曲线C2 (a>0,b>0)有公共焦点F2 , 点A是曲线C1 , C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以双曲线C2的另一焦点F1为圆心的圆M与直线y= 相切,圆N:(x﹣2)2+y2=1.过点P(1, )作互相垂直且分别与圆M、圆N相交的直线l1和l2 , 设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,问: 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题R,p:x∈R使 ,命题q:x∈R都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题
②命题“命题“p∨q”是假命题
③命题“p∨q”是真命题
④命题“p∨q”是假命题
其中正确的是( )
A.②④
B.②③
C.③④
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是(
A.
B.y=x2
C.y=﹣x|x|
D.y=x2

查看答案和解析>>

同步练习册答案