精英家教网 > 高中数学 > 题目详情

【题目】有一位同学家里开了一个小卖部,他为了研究气温对热茶销售的影响,经过统计,得到一个卖出热茶杯数与当天气温的对比表如下:

气温x/

-5

0

4

7

12

15

19

23

27

31

36

热茶销售杯数y/杯

156

150

132

128

130

116

104

89

93

76

54

(1)画出散点图;

(2)你能从散点图中发现气温与热茶的销售杯数之间关系的一般规律吗?

(3)如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系;

(4)试求出回归直线方程;

(5)利用(4)的回归方程,若某天的气温是2 ,预测这一天卖出热茶的杯数.

【答案】(1)见解析;(2)见解析;(3)见解析;(4);(5)143

【解析】分析:(1)以x轴表示气温,以y轴表示热茶杯数,可作散点图

(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此热茶的销售杯数与气温是相关的,气温越高,卖出去的热茶杯数越少

(3)从散点图可以看出,这些点大致分布在一条直线附近,根据不同的标准可以画出不同的直线来近似地表示这种线性相关关系

(4)由题中所给的数据求得回归方程即可;

(5)结合回归方程的预测作用和(4)中的结论整理计算即可求得最终结果.

详解(1)以x轴表示气温,以y轴表示热茶杯数,可作散点图如下图所示.

(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此热茶的销售杯数与气温是相关的,气温越高,卖出去的热茶杯数越少.

(3)从散点图可以看出,这些点大致分布在一条直线附近,根据不同的标准可以画出不同的直线来近似地表示这种线性相关关系,如图所示.

(4)因335,778.

≈-2.35,

所以回归直线方程

(5)由(4)的方程,当x=22 ℃,这一天大约可以卖出143杯热茶.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,EF分别是PAAB的中点,∠CEF=90°.则球O的体积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x[-1,2]时,f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,则a+3b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2010年至2016年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2010

2011

2012

2013

2014

2015

2016

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的回归直线方程;

(2)利用(1)中的回归方程,分析2010年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,若变量增加一个单位时,则平均增加5个单位;

③线性回归方程所在直线必过

④曲线上的点与该点的坐标之间具有相关关系;

⑤在一个列联表中,由计算得,则其两个变量之间有关系的可能性是.

其中错误的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.

(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,线段的长度为,在线段上取两个点使得,以为一边在线段的上方做一个正六边形,然后去掉线段得到图2中的图形对图2中的最上方的线段作相同的操作,得到图3中的图形依此类推,我们就得到了以下一系列图形:

记第个图形(图1为第1个图形中的所有线段长的和为,现给出有关数列的四个命题:

①数列是等比赞列;

②数列是递增数列;

③存在最小的正数使得对任意的正整数,都有

④存在最大的正数使得对任意的正整数,都有.

其中真命题的序号是__________. (请写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻

查看答案和解析>>

同步练习册答案