精英家教网 > 高中数学 > 题目详情
若曲线C1:ρ=2cosθ与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:曲线C1:ρ=2cosθ化为ρ2=2ρcosθ,化为曲线C1:(x-1)2+y2=1,图象为圆心为(1,0),半径为1的圆;曲线C2:y=0,或者y-mx-m=0,直线y-mx-m=0恒过定点(-1,0),即曲线C2图象为x轴与恒过定点(-1,0)的两条直线.结合图形即可得出.
解答: 解:曲线C1:ρ=2cosθ化为ρ2=2ρcosθ,∴x2+y2=2x.
曲线C1:(x-1)2+y2=1,图象为圆心为(1,0),半径为1的圆;
曲线C2:y=0,或者y-mx-m=0,直线y-mx-m=0恒过定点(-1,0),即曲线C2图象为x轴与恒过定点(-1,0)的两条直线.
作图分析:k1=tan 30°=
3
3
,k2=-tan 30°=-
3
3

又直线l1(或直线l2)、x轴与圆共有四个不同的交点,
结合图形可知m=k∈(-∞,-
3
3
)∪(
3
3
,+∞)

故选:B.
点评:本题考查了极坐标化为直角坐标、直线与圆的位置关系、斜率,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商店开张,采用摸奖形式吸引顾客,暗箱中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,进入商店的人都可以从箱中摸取两球,若两球颜色为一白一黑即可领取小礼品,则能得到小礼品的概率等于(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知随机变量ξ~N(0,σ2),若P(-2≤ξ≤0)=0.2,则P(ξ≥2)等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程是y=±
1
2
x,焦点在x轴上,焦距为20,则它的方程为(  )
A、
y2
20
-
x2
80
=1
B、
x2
20
-
y2
80
=1
C、
y2
80
-
x2
20
=1
D、
x2
80
-
y2
20
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,1]上的两个函数f(x)和g(x),其中f(x)=x2-ax+2(a≥0),g(x)=-
1
x+1
+1.
(1)求函数f(x)的最小值m(a);
(2)若对任意x1,x2∈[0,1],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)说出下列伪代码表示的算法目的.

(2)根据伪代码,写出执行结果.
算法开始

输出x的值;
算法结束.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg(
2
1-x
+a
)是奇函数
(1)求a的值;
(2)证明f(x)在定义域上是单调函数;
(3)若f(t2-1)+f(2t-1)>0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0(m∈R).
(1)试判断直线l与圆C的位置关系;
(2)设直线l与圆C交于A,B两点,若直线l的倾斜角为120°,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
lgx,x>0
x+
a
0
3t2dt,x≤0
,f(f(1))=1,则a的值为.
A、1B、2C、-1D、-2

查看答案和解析>>

同步练习册答案