精英家教网 > 高中数学 > 题目详情

【题目】学校游园活动有这样一个游戏:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除了颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中:
①摸出3个白球的概率.
②获奖的概率.
(2)求在3次游戏中获奖次数X的分布列.(用数字作答)

【答案】
(1)解:①设“在1次游戏中摸到i个白球”为事件Ai(i=0,1,2,3),

则P(A3)= =

②设“在一次游戏中获奖”为事件B,则B=A2∪A3

又P(A2)= + = ,且A2、A3互斥,

所以P(B)=P(A2)+P(A3)= + =


(2)解:由题意可知X的所有可能取值为0,1,2,3;

P(X=0)= (1﹣ 3=

P(X=1)=C31 =

P(X=2)= (1﹣ )=

P(X=3)= =

所以X的分布列为

X

0

1

span>2

3

P


【解析】(1)①求出基本事件总数,计算摸出3个白球事件数,利用古典概型公式,代入数据得到结果;②获奖包含摸出2个白球和摸出3个白球,且它们互斥,根据①求出摸出2个白球的概率,再相加即可求得结果;(2)确定在3次游戏中获奖次数X的取值是0、1、2、3,求出相应的概率,即可写出分布列.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2﹣x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.

(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合为集合个非空子集,这个集合满足:①从中任取个集合都有 成立;②从中任取个集合都有 成立

,写出满足题意的一组集合

写出满足题意的一组集合以及集合

) 求集合中的元素个数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=﹣ x3+ x2+2ax.
(1)若f(x)在( ,+∞)上是单调减函数,求实数a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为﹣ ,求f(x)在该区间的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面,四边形为菱形,点是棱上不同于 的点,平面与棱交于点

(Ⅰ)求证: ∥平面

求证: 平面

若二面角的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)的定义域为R,且在(﹣∞,0)上是增函数,则f(﹣ )与f(a2﹣a+1)的大小关系为(
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足:a1= ,前n项和Sn= an
(1)写出a2 , a3 , a4
(2)猜出an的表达式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案