精英家教网 > 高中数学 > 题目详情
若函数f(x)=
2x(x<3)
3x-m(x≥3)
,且f(f(2))>7,则实数m的取值范围为
m<5
m<5
分析:先计算得出f(2)=4,由已知,将f(f(2))>7可化为12-m>7.
解答:解:f(2)=4,f(f(2))>7
即为f(4)>7,即12-m>7,解得m<5
故答案为:m<5
点评:本题实质上考查分段函数求函数值,按照由内到外的顺序逐步求解.要确定好自变量的取值或范围,再代入相应的解析式求得对应的函数值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
-2x+3(x≤2)
logax(x>2)
在R上是减函数,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设m∈N,若函数f(x)=2x-m
10-x
-m+10
存在整数零点,则m的取值集合为
{0,3,14,30}
{0,3,14,30}
,此时x的取值集合为
{-5,1,9,10}
{-5,1,9,10}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,                 x>0
-x2-2x-2,   x≤0

(Ⅰ)在给定的平面直角坐标系中画出函数f(x)图象;
(Ⅱ)利用图象写出函数f(x)的值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,x<0
-2-x,x>0
,则函数y=f(f(x))的值域是
 

查看答案和解析>>

同步练习册答案