精英家教网 > 高中数学 > 题目详情

【题目】对于任意实数a,b,定义max{a,b}= , 已知在[﹣2,2]上的偶函数f(x)满足当0≤x≤2时,f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有两个根,则m的取值范围是(  )
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]

【答案】A
【解析】当1≤x≤2时,2x﹣1>2﹣x,此时f(x)=2x﹣1,
当0≤x≤1时,2x﹣1<2﹣x,此时f(x)=2﹣x,
即f(x)=
若﹣2≤x≤﹣1,则1≤﹣x≤2,此时f(﹣x)=2﹣x﹣1,
∵f(x)是偶函数,
∴f(x)=f(﹣x)=2﹣x﹣1,﹣2≤x≤﹣1.
若﹣1≤x≤0,则0≤﹣x≤1,此时f(﹣x)=2﹣x,
∵f(x)是偶函数,
∴f(x)=f(﹣x)=2﹣x,﹣1≤x≤0.
作出函数f(x)的图象如图:
由f(x)﹣mx+1=0得f(x)=mx﹣1,
设g(x)=mx﹣1,
则当m=0时,f(x)与g(x)没有交点,此时不满足条件.
当m>0时,当x=1,f(1)=1,当x=2时,f(2)=3,
当直线经过A(1,1)时,此时m﹣1=1,则m=2,此时g(x)=2x﹣1,
g(2)=3,即直线g(x)=2x﹣1经过A,C点,此时两个曲线有两个交点,满足条件,
当直线y=mx﹣1与f(x)=2x﹣1相切时,
设切点为(k,n),
则f′(k)=2kln2,且2k﹣1=n,
则切线方程为y﹣n=2kln2(x﹣k),
即y=(2kln2)x﹣k2kln2+2k﹣1,
即2kln2=m,且﹣k2kln2+2k﹣1=﹣1,
即2kln2=m,且﹣k2kln2+2k=0,
2kln2=m,且﹣kln2+1=0,
即kln2=1,解得k==log2e,
则m==eln2,
此时直线和f(x)只有一个交点,
若时两个曲线有两个交点,则eln2<m≤2,
根据偶函数的对称性知当m<0时,﹣2≤m<eln2,
综上m的取值范围是[﹣2,﹣eln2)∪(eln2,2],
故选:A

根据条件先求出当0≤x≤2时,函数f(x)的解析式,然后根据偶函数的性质求出函数在[﹣2,2]上解析式,利用函数与方程之间的关系转化为两个函数的相交问题,结合导数的几何意义求出切线斜率进行求解即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.

(Ⅰ)求抛物线C的方程;

(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2+bx-ln x的导函数的零点分别为1和2.

(I) 求a , b的值;

(Ⅱ)若当时,恒成立, 求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=ex , 其中e是白然对数的底数,e=2.71828…
(I)若函数φ(x)=f(x)﹣求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数f(x)的图象上一点A(x0 , f(x0)处的切线,证明:在区间(1,+∞)上存在唯一的x0 , 使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的外接圆半径,角ABC的对边分别是abc,且.

I)求角B和边长b

II)求面积的最大值及取得最大值时的ac的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k的值为(  )

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示

参加社团活动

不参加社团活动

合计

学习积极性高

17

8

25

学习积极性一般

5

20

25

合计

22

28

50

(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
x2=

P(x2≥k)

0.05

0.01

0.001

K

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.命题p:“?x0∈R, ”,则命题?p:?x∈R,x2﹣2x+1>0
B.“lna>lnb”是“2a>2b”的充要条件
C.命题“若x2=2,则 ”的逆否命题是“若 ,则x2≠2”
D.命题p:?x0∈R,1﹣x0<lnx0;命题q:对?x∈R,总有2x>0;则p∧q是真命题

查看答案和解析>>

同步练习册答案