精英家教网 > 高中数学 > 题目详情

【题目】设函数(a,bR)的导函数为,已知的两个不同的零点.

(1)证明:

(2)当b=0时,若对任意x>0,不等式恒成立,求a的取值范围;

(3)求关于x的方程的实根的个数.

【答案】(1)见解析;(2);(3)1个.

【解析】

(1)求函数的导数,利用△=4a2﹣12b>0,得证;

(2)分离参数a,所以a≥﹣x对任意x>0恒成立,令新函数设g(x)=﹣x求最值即可,或采用x3+ax2﹣xlnx≥0时求左侧最值亦可.

(3)转化函数求零点个数可得结论.

(1)函数f(x)=x3+ax2+bx(a,b∈R)的导函数为f′(x)=3x2+2ax+b.

已知x1,x2是f'(x)的两个不同的零点,设x1<x2

所以△=4a2﹣12b>0,所以:a2>3b得证;

(2)当b=0时,对任意x>0,f(x)≥xlnx恒成立,

所以x3+ax2≥xlnx,即x3+ax2﹣xlnx≥0,x2+ax﹣lnx≥0对任意x>0恒成立,

所以a≥﹣x对任意x>0恒成立,

设g(x)=﹣x,则

令h(x)=1﹣1nx﹣x2,则h(x)=﹣﹣2x<0,

所以h(x)在(0,+∞)上单调递减,注意到h(1)=0,

当x∈(0,1)时,h(x)>0,g(x)>0,所以g(x)在(0,1)上单调递增,

当x∈(1,+∞)时,H(x)<0,g(x)<0,所以g(x)在(1,+∞)上单调递减,

所以,当x=1时,g(x)有最大值g(1)=﹣1,

所以a的取值范围为[﹣1,+∞);

(3)由题意设F(x)=f(x)﹣f(x1)﹣

则原问题转化为求函数F(x)的零点的个数,

因为导函数为f(x)=3x2+2ax+b,已知x1,x2是f'(x)的两个不同的零点,

所以:,所以:

所以F(x)在(0,+∞)上单调递增,注意到F(x1)=0,所以F(x)在(0,+∞)上存在唯一零点x1

∴关于x的方程有1个实根,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路垂直的两条道路,且的造价分别为5万元百米,40万元百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路的总造价为万元,题中所涉及的长度单位均为百米.

1)求解析式;

2)当为多少时,总造价最低?并求出最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)已知点是圆上任意一点,过点轴的垂线,垂足为,点满足 记点的轨迹为曲线

)求曲线的方程;

)设,点在曲线上,且直线与直线的斜率之积为,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的60名学生,得到数据如下表:

喜欢统计课程

不喜欢统计课程

合计

男生

20

10

30

女生

10

20

30

合计

30

30

60

(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?

(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选3人,求恰有2个男生和1个女生的概率.

下面的临界值表供参考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为直角梯形,平面.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:只要,必有,则称具有性质.

1)若具有性质,且,求

2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列, 判断是否具有性质,并说明理由;

3)设是无穷数列,已知.求证:对任意都具有性质的充要条件为是常数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从《全唐诗》48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:

爱情婚姻

咏史怀古

边塞战争

山水田园

交游送别

羁旅思乡

其他

总计

篇数

100

64

55

99

91

73

18

500

含“山”字的篇数

51

48

21

69

48

30

4

271

含“帘”字的篇数

21

2

0

0

7

3

5

38

含“花”字的篇数

60

6

14

17

32

28

3

160

1)根据上表判断,若从《全唐诗》含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;

2)已知检索关键字的选取规则为:

①若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;

②若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;

设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.

属于“爱情婚姻”类

不属于“爱情婚姻”类

总计

含“花”字的篇数

不含“花”的篇数

总计

附:,其中.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机企业为确定下一年度投入某种产品的研发费用,统计了近年投入的年研发费用千万元与年销售量千万件的数据,得到散点图1,对数据作出如下处理:令,得到相关统计量的值如图2

1)利用散点图判断哪一个更适合作为年研发费用和年销售量的回归类型(不必说明理由),并根据数据,求出的回归方程;

2)已知企业年利润千万元与的关系式为(其中为自然对数的底数),根据(1)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

查看答案和解析>>

同步练习册答案