精英家教网 > 高中数学 > 题目详情

【题目】已知函数)是奇函数.

1)求实数的值;

2)若,求的取值范围.

3)若,且恒成立,求的范围.

【答案】(1)(2)(3)

【解析】

1)由函数为奇函数可得,代入即可得的值,再验证即可;(2)结合(1)中的结论以及可得的值,解不等式即可得的取值范围;(3)结合(1)中的结论以及可得,可得的解析式,令,原题意可等价于上恒成立,利用分离参数思想可得上恒成立,求出不等式右端的的最小值即可.

1)∵是奇函数,∴

,即

时,

是奇函数.

.

2)由(1)知.

即:

,又

化简得:,∴

∴此时.

3)∵

.

*.

,∴.

∴(*)可化为:.

要使上恒成立,

只需:上恒成立.

即:上恒成立.

即:

又函数单减,单增.

,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若关于的方程在区间上有解,求实数的取值范围;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年11月、12月全国大范围流感爆发,为研究昼夜温差大小与患感冒人数多少之间的关系,一兴趣小组抄录了某医院11月到12月间的连续6个星期的昼夜温差情况与因患感冒而就诊的人数得到如下资料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是先从这六组数据中选取2组用剩下的4组数据求线性回归方程再用被选取的2组数据进行检验

(Ⅰ)求选取的2组数据恰好是相邻两个星期的概率;

(Ⅱ)若选取的是第一周与第六周的两组数据请根据第二周到第五周的4组数据,求出关于的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式: )

参考数据: 1092, 498

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解华师一附中学生喜欢吃辣是否与性别有关,调研部(共10人)分三组对高中三个年级的学生进行调查,每个年级至少派3个人进行调查.(1)求调研部的甲、乙两人都被派到高一年级进行调查的概率.(2)调研部对三个年级共100人进行了调查,得到如下的列联表,请将列联表补充完整,并判断是否有以上的把握认为喜欢吃辣与性别有关?

喜欢吃辣

不喜欢吃辣

合计

男生

10

女生

20

30

合计

100

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过焦点且斜率存在的直线与抛物线交于两点,且点在点上方,点与点关于轴对称.

(1)求证:直线过某一定点

(2)当直线的斜率为正数时,若以为直径的圆过,求的内切圆与的外接圆的半径之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这100人年龄的平均数;

(2)根据以上统计数据填写下面的22列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?

45岁以下

45岁以上

总计

不支持

支持

总计

参考数据:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数在区间上有最大值4,最小值为0.

1)求函数的解析式;

2)设,若对任意恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,且,求的最小值;

(2)若,且上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

同步练习册答案