精英家教网 > 高中数学 > 题目详情
设A,F分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点与右焦点,若在其右准线上存在点P,使得线段PA的垂直平分线恰好经过点F,则椭圆的离心率的取值范围是
 
分析:由题意,椭圆上右准线上存在点P,使得线段AP的垂直平分线过点F,即F点到P点与A点的距离相等,根据|PF|的范围求得|FA|的范围,进而求得
c
a
的范围即离心率e的范围.
解答:精英家教网解:由题意,椭圆上右准线上存在点P,使得线段AP的垂直平分线过点F,即F点到P点与A点的距离相等
而|FA|=a+c,如图,
又|FH|=
a2
c
-c

|PF|≥|FH|,
于是a+c≥
a2
c
-c
即ac+2c2≥a2
∴2e2+e-1≥0,e≥
1
2
,又e∈(0,1)
故e∈[
1
2
,1)
故答案为:[
1
2
,1).
点评:本题考查线段的中点公式,两直线垂直的性质,以及椭圆的简单性质的应用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为y=
1
8
x2+b
,如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G处的切线经过椭圆的右焦点F1
(1)求点G和点F1的坐标(用b表示);
(2)求满足条件的椭圆方程和抛物线方程;
(3)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:《第2章 圆锥曲线与方程》2010年单元测试卷(瓯海中学)(解析版) 题型:解答题

设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:2011年广东省汕头市金山中学高考数学模拟试卷(文科)(解析版) 题型:解答题

设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市海安县高考数学回归课本专项检测(一)(解析版) 题型:解答题

设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

同步练习册答案