精英家教网 > 高中数学 > 题目详情
复数z满足iz=3+4i(i是虚数单位),则z=
 
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数的运算法则即可得出.
解答: 解:∵iz=3+4i,
∴-i•iz=-i(3+4i),
∴z=4-3i,
故答案为:4-3i.
点评:本题考查了复数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+cosx,则f′(
π
4
)
=(  )
A、-
1
2
B、0
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,复数z=
1+2i
1+i
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a}.
(1)求A∪B;
(2)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={1,3,4},B={3,4,5},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|
x-1
x+1
≥2,x∈Z}的子集个数为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:|x2-
1
2
|<2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期为6π,且f(
π
2
)=
3

(1)求f(x)的解析式;
(2)设α∈[
π
2
,π],f(3α+π)=
10
13
,f(3β+
2
)=-
6
5
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两焦点分别为F1,F2,离心率e=
1
2
.设P(x0,y0)为椭圆上第一象限内的点,△PF1F2的周长为6.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:3x0x+4y0y-12=0分别与直线x=±2交于C、D两点.
(1)判断直线l与椭圆E交点的个数;
(2)试探究:在坐标平面内是否存在定点,使得以CD为直径的圆恒过该定点?若存在,求出此定点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案