精英家教网 > 高中数学 > 题目详情
16.如图,在正方体ABCD-A1B1C1D1中,E、F分别是线段BC、CD1的中点.
(1)求异面直线EF与AA1所成角的大小
(2)求直线EF与平面AA1B1B所成角的大小.

分析 建立如图所示的坐标系,利用向量方法,即可求出所求角.

解答 解:(1)建立如图所示的坐标系,设正方体的棱长为2,则E(1,2,0),F(0,1,1),A(2,0,0),A1(2,0,2),
∴$\overrightarrow{EF}$=(-1,-1,1),$\overrightarrow{A{A}_{1}}$=(0,0,2),
∴异面直线EF与AA1所成角的余弦值为|$\frac{2}{\sqrt{3}•2}$=$\frac{\sqrt{3}}{3}$,
∴异面直线EF与AA1所成角的大小为arccos$\frac{\sqrt{3}}{3}$;
(2)平面AA1B1B的法向量为(1,0,0),
∴直线EF与平面AA1B1B所成角的正弦值为|$\frac{-1}{\sqrt{3}•1}$|=$\frac{\sqrt{3}}{3}$,
∴直线EF与平面AA1B1B所成角的大小为arcsin$\frac{\sqrt{3}}{3}$.

点评 本题考查空间角,考查向量方法的运用,正确求出向量的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.sin(-$\frac{10π}{3}$)的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和Sn=n2+n,则a1+a3+a5+a7+a9=(  )
A.50B.45C.90D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线y=k(x+3)与圆x2+y2-2x=3相切,则k=±$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2(x+$\frac{π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)求函数h(x)=f(x)+g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A、B、C所对的边分别为a、b、c,且b(2sinB-sinA)+(2a-b)sinA=2csinC,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),则sinx-cos2x=(  )
A.$\frac{5\sqrt{2}-12}{18}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,
(1)求异面直线A1B与B1C所成角的余弦值..
(2)若点E、F分别是AB、A1B的中点,求证:EF∥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}{b}=5$,则a+b的取值范围是(  )
A.[1,4]B.[2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

同步练习册答案