精英家教网 > 高中数学 > 题目详情
精英家教网在平行四边形ABCD中,设边AB、BC、CD的中点分别为E、F、G,设DF与AG、EG的交点分别为H、K,设
AB
=
a
BC
=
b
,试用
a
b
表示
GK
AH
分析:本题是向量伯一道综合题,需要综合运用平面向量的加减法与向量的数乘运算来达到用两个基向量
a
b
表示
GK
AH
的目的,所研究的两个向量与两个基向量不在一个三角形中,故需要先用根据图形用与它们共线的向量将它们表示出来,然后再用两个基向量表示.
解答:精英家教网解:如图所示,因为AB、BC、CD的中点分别为E、F、G,
所以
GK
=
GD
+
1
2
DF
=
GD
+
1
2
CF
-
CD

=-
1
2
a
+
1
2
(-
1
2
b
+
a
)=-
1
4
a
-
1
4
b
.(5分)
因为A、H、G三点共线,
所以存在实数m,使
AH
=m
AG
=m(
b
+
1
2
a
)=m
b
+
1
2
m
a

又D、H、F三点共线,
所以存在实数n,使
DH
=n
DF
=n(
a
-
1
2
b
)=n
a
-
1
2
n
b

因为
AD
+
DH
=
AH
,所以(1-
n
2
)
b
+n
a
=m
b
+
m
2
a
(10分)
因为a、b不共线,
1-
n
2
=m且n=
m
2
解得m=
4
5

AH
=
4
5
b
+
1
2
a
)=
2
5
a
+
4
5
b
.(14分)
点评:本题考点是向量数乘的运算及其几何意义,考查了向量的三角形法则与向量数乘的几何意义,本题是向量的运算法则的综合运用,要注意结合图形依据向量的相关的知识进行正确转化,当画图时必画图.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若
AC
=
a
BD
=
b
,则
AE
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)在平行四边形ABCD中,
AE
=
1
3
AB
AF
=
1
4
AD
,CE与BF相交于G点.若
AB
=
a
AD
=
b
,则
AG
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,边AB所在直线方程为2x-y-3=0,点C(3,0).
(1)求直线CD的方程;
(2)求AB边上的高CE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,点E为CD中点,
AB
=
a
AD
=
b
,则
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)在平行四边形ABCD中,若
AB
=(1,3)
AC
=(2,5)
,则向量
AD
的坐标为
(1,2)
(1,2)

查看答案和解析>>

同步练习册答案