精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x3-3x2cosθ+cosθ,其中x∈R,θ为参数,且0≤θ<2π,
(1)当cosθ=0时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(3)若对(2)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围。
解:(1)当cosθ=0时,,则f(x)在(-∞,+∞)内是增函数,故无极值。
(2)
令f′(x)=0,得
由(1),只需分下面两种情况讨论
①当cosθ>0时,随x的变化,f′(x)的符号及f(x)的变化情况如下表:

因此,函数f(x)在处取得极小值
要使>0,必有
可得,由于0≤θ<2π,故
②当cosθ<0时,随x的变化,f′(x)的符号及f(x)的变化情况如下表:

因此,函数f(x)在x=0处取得极小值f(0),且
若f(0)>0,则cosθ>0,矛盾,所以当cosθ<0时,f(x)的极小值不会大于零;
综上,要使函数f(x)在(-∞,+∞)内的极小值大于零,参数θ的取值范围为
(3)由(2)知,函数f(x)在区间(-∞,0)与内都是增函数,
由题设,函数f(x)在(2a-1,a)内是增函数,
则a须满足不等式组
由(2),参数时,
要使不等式关于参数θ恒成立,必有,即
综上,解得a≤0或
所以a的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
4-x2
在区间M上的反函数是其本身,则M可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则P点的坐标是
(1,5)
(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x
的定义域为A,B={x|2x+3≥1}.
(1)求A∩B;
(2)设全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),数列{an}满足an=f(n)(n∈N*),且{an}是单调递增数列,则实数a的取值范围(  )

查看答案和解析>>

同步练习册答案