精英家教网 > 高中数学 > 题目详情

已知圆C:(x+1)2+y2=8.
(1)设点Q(x,y)是圆C上一点,求x+y的取值范围;
(2)如图,定点A(1,0),M为圆C上一动点,点P在AM上,点N在CM上,且满足数学公式,求点N的轨迹的内接矩形的最大面积.

解:(1)∵点在圆C上,

∴可设α∈[0,2π);(2分)
,(4分)
从而x+y∈[-5,3].(6分)
(2)∵
∴NP为AM的垂直平分线,
∴|NA|=|NM|.(8分)
又∵,∴
∴动点N的轨迹是以点C(-1,0),A(1,0)为焦点的椭圆.(10分)
且椭圆长轴长为,焦距2c=2.

∴点N的轨迹是方程为.(12分)
所以N为椭圆,其内接矩形的最大面积为.(14分)
分析:(1)由已知中圆C:(x+1)2+y2=8,我们易求出圆的参数方程α∈[0,2π),将问题转化为三角函数值域问题,利用辅助角公式,及正弦型函数的性质,易得到答案.
(2)由,易得NP为AM的垂直平分线,则.则动点N的轨迹是以点C(-1,0),A(1,0)为焦点的椭圆,且椭圆长轴长为,焦距2c=2.由此可以得到N的轨迹方程,则连接其通径四个点的内接矩形的面积最大,由此即可得到答案.
点评:本题考查的知识点是圆方程的综合应用,在求x+y的取值范围时,利用参数方程可以大大简化解题的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
(3)设圆C与x轴交于M、N两点,有一动点Q使∠MQN=45°.试求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=5,直线l:x-y=0,则C关于l的对称圆C′的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=1,那么圆心C到坐标原点O的距离是
2
2

查看答案和解析>>

同步练习册答案