精英家教网 > 高中数学 > 题目详情
设函数f(x)=|2x+1|+|x-a|(a∈R).
(1)当a=2时,求不等式f(x)≤4;
(2)当a<-
1
2
时,若存在x≤-
1
2
使得f(x)+x≤3成立,求a的取值范围.
考点:绝对值不等式的解法
专题:计算题,推理和证明
分析:(1)运用函数的零点分区间,讨论当x≥2、x≤-
1
2
、-
1
2
<x<2时,化简不等式解得,最后求并集即可;
(2)由题意知这是一个存在性的问题,须求出不等式左边的最小值,即可解出实数a的取值范围.
解答: 解:(1)当a=2时,f(x)=|2x+1|+|x-2|,
当x≥2时,f(x)≤4,即为(2x+1)+(x-2)≤4,即x≤
5
3
成立,则有2≤x≤
5
3

当x≤-
1
2
时,f(x)≤4,即为-(2x+1)-(x-2)≤4,即x≥-1,则-1≤x≤-
1
2

当-
1
2
<x<2时,f(x)≤4,即为(2x+1)-(x-2)≤4,即x≤1,则有-
1
2
<x≤1.
则原不等式的解集为[-1,1];
(2)由a<-
1
2
,x≤-
1
2
可得f(x)=
-2x+a-1,x<a
-a-1,a≤x≤-
1
2

∵存在x≤-
1
2
使得f(x)+x≤3成立,
∴3≥|f(x)+x|min=-a-1,
∴求得a≥-4,
则a的取值范围为[-4,-
1
2
).
点评:本题主要考查绝对值不等式的解法,考查不等式的存在性问题,注意与恒成立问题的区别,属于中档题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果在一次试验中,测得(x,y)的四组数值分别是
x16171819
y50344131
根据上表可得回归方程
y
=-5x+
a
,据此模型预报当x为20时,y的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[-π,π]上的图象如图,则函数与序号匹配正确的是(  )
A、f(x)-①,g(x)-②,h(x)-③,φ(x)-④
B、f(x)-①,φ(x)-②,g(x)-③,h(x)-④
C、g(x)-①,h(x)-②,f(x)-③,φ(x)-④
D、f(x)-①,h(x)-②,g(x)-③,φ(x)-④

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③根据散点图求得的回归直线方程可能是没有意义的;
④若某项测量结果ξ服从正态分布N(1,σ2),且P(ξ≤4)=0.9,则P(ξ≤-2)=0.1.
其中真命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级共有300人参加数学期中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图.
(Ⅰ) 求样本的平均数;
(Ⅱ) 设该题得分大于样本的平均数为合格,根据样本数据估计该校高三年级有多少名同学此题成绩合格;
(Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )
A、(1,
2
B、(
3
,+∞)
C、(
3
,2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是(  )
A、
5
6
B、
3
4
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法流程图,则输出的x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(x2-2x+a)的值域不可能是(  )
A、(-∞,0]B、[0,+∞)
C、[1,+∞)D、R

查看答案和解析>>

同步练习册答案