精英家教网 > 高中数学 > 题目详情

如图,已知三棱柱的侧棱与底面垂直,且,,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求二面角的余弦值.

解析试题分析:(1)线面平行的证明主要是走线面平行的判定定理这条路,因此必须在平面内寻找到一条与平行的直线,借助平几知识,这条直线不难找到;(2)在证明垂直关系时,如果几何证明有困难,也可从向量考虑;(3)求二面角的大小,主要是走向量这条路,它有固定步骤:首先求两个面的法向量,其次求法向量的余弦值进而得法向量的夹角,然后根据二面角是锐角还是钝角,决定其大小.
试题解析:(1)证明:连接的中点 ,过点
的中点,
平面
(2)在直角中,
棱柱的侧棱与底面垂直,且,以点为原点,以所在的直线为轴建立如图所示空间直角坐标系如图示,则


(3)依题意得
设面的一个法向量为
,得,令,得
同理可得面的一个法向量为
故二面角的平面角的余弦值为.
考点:空间向量与立体几何.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在空间直角坐标系中,已知M(2,0,0),N(0,2,10),若在z轴上有一点D,满足,则点D的坐标为                  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,且AB=AD=PD=1,CD=2,E为PC的中点.
(1)求证:BE∥平面PAD;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,,且二面角D﹣BP﹣A的大小为,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4

(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

向量则x-y=        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

空间直角坐标系中,点关于平面的对称点的坐标为       

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE.求证:MN∥平面CDE.

查看答案和解析>>

同步练习册答案