精英家教网 > 高中数学 > 题目详情
2.直线l经过点A(1,2),在y轴上的截距的取值范围是(-2,3),则其斜率的取值范围是(  )
A.(-1,$\frac{1}{4}$)B.(-1,$\frac{1}{2}$)∪(1,+∞)C.(-∞,-1)∪(4,+∞)D.(-1,4)

分析 设直线方程为y-2=k(x-1),求出直线在y轴上的截距,利用直线l在y轴上的截距的取值范围是(-2,3),即可求出斜率的取值范围.

解答 解:设直线方程为y-2=k(x-1),
令x=0,可得y=2-k
∵直线l在y轴上的截距的取值范围是(-2,3),
∴-2<2-k<3,
∴-1<k<4.
故选:D.

点评 本题考查直线的斜率,考查了直线方程的点斜式,训练了直线在y轴上的截距的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,点E、F分别是正方体ABCD-A1B1C1D1的棱AD、AA1的中点,G是棱CC1上一点.
(Ⅰ)求证:平面A1B1E⊥平面D1FG;
(Ⅱ)若AB=2,CG=2-$\sqrt{3}$,M是棱DD1的中点,点N在线段D1G上,MN∥DC,求二面角D1-FN-M的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一直线与直二面角的两个面所成的角分别为α,β,则(  )
A.α+β<90°B.α+β≤90°C.α+β>90°D.α+β≥90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果X~B(1,p),则D(X)(  )
A.有最大值$\frac{1}{2}$B.有最大值$\frac{1}{4}$C.有最小值$\frac{1}{2}$D.有最小值$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知无穷等差数列{an}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{bn}
(1)求b1和b2
(2)求{bn}的通项公式;
(3){bn}中的第503项是{an}中的第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,点A是椭圆C上任意一点,且△AF1F2的周长为2($\sqrt{2}$+1)
(1)求椭圆C的标准方程;
(2)若动点B在直线l:y=$\sqrt{2}$上,且OA⊥OB,点O到直线AB的距离为d(A,B),求证:d(A,B)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)从5位男生与3位女生中选派4名代表参加某项活动,要求其中至少有1位女生,一共有多少种选派方案(用数字作答)
(2)已知($\sqrt{x}$-$\frac{2}{x}$)n的展开式中x的一次项是第3项,求n的值及展开式中二次项系数最大的项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由函数y=sin(5x+$\frac{π}{6}$)的图象得到y=sinx的图象,下列操作正确的是(  )
A.将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变
B.将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变
C.将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变
D.将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}^{2}+3{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(Ⅰ)求证:$\frac{2n+1}{3}$≤an≤n;
(Ⅱ)设数列{an}的前n项和为Sn,当n≥5时,求证:Sn≥$\frac{1}{3}$n2+$\frac{4}{5}$n-$\frac{8}{15}$.

查看答案和解析>>

同步练习册答案