精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=,a2=并且数列log2(a2-),log2(a3-),…,log2

(an+1-)是公差为-1的等差数列,而a2-,a3-,…,an+1-是公比为的等比数列,求数列{an}的通项公式.

剖析:由数列{log2(an+1-)}为等差数列及等差数列的通项公式,可求出an+1与an的一个递推关系式①;由数列{an+1-}为等比数列及等比数列的通项公式,可求出an+1与an的另一个递推关系式②.解两个关系式组成的方程组,即可求出an.

解:∵数列{log2(an+1-)}是公差为-1的等差数列,

    ∴log2(an+1-)=log2(a2-a1)+(n-1)(-1)=log2(-×)-n+1=-(n+1),

于是有an+1-=2-(n+1).                                         ①

    又∵数列{an+1-an}是公比为的等比数列,∴an+1-an=(a2-a1)·3-(n-1)

    =(-×)·3-(n-1)=3-(n+1).

    于是有an+1-an=3-(n+1).                                    ②

    由①-②可得an=2-(n+1)-3-(n+1),

    ∴an=-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案