精英家教网 > 高中数学 > 题目详情

【题目】某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.

现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据:

(1)设的相关系数为的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;

(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);

(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元?

附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:

② 参考数据:

【答案】(1)模型的拟合程度更好;(2)(i);(ii)亿元.

【解析】

1)由相关系数求出两个系数,比较大小可得;

2)(i)先建立关于的线性回归方程,从而得出关于的回归方程;

(ii)把代入(i)中的回归方程可得值.

本小题主要考查回归分析等基础知识,考查数据处理能力、运算求解能力、抽象概括能力及应用意识,考查统计与概率思想、分类与整合思想,考查数学抽象、数学运算、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.

解:(1)

,因此从相关系数的角度,模型的拟合程度更好

(2)(i)先建立关于的线性回归方程.

,得,即

由于

所以关于的线性回归方程为

所以,则

(ii)下一年销售额需达到90亿元,即

代入得,

,所以

所以

所以预测下一年的研发资金投入量约是亿元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设实数列满足,则下面说法正确的是(

A.,则2019项中至少有1010个值相等

B.,则当确定时,一定存在实数使恒成立

C.一定为等比数列

D.,则当确定时,一定存在实数使恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,曲线C的参数方程为a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.

1)求C的普通方程和l的倾斜角;

2)设点lC交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网上购物的普及,传统的实体店遭受到了强烈的冲击,某商场实体店近九年来的纯利润如下表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

时间代号

1

2

3

4

5

6

7

8

9

实体店纯利润(千万)

2

2.3

2.5

2.9

3

2.5

2.1

1.7

1.2

根据这9年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.254;根据后5年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.985;

(1)如果要用线性回归方程预测该商场2019年实体店纯利润,现有两个方案:

方案一:选取这9年的数据,进行预测;

方案二:选取后5年的数据进行预测.

从生活实际背景以及相关性检验的角度分析,你觉得哪个方案更合适.

附:相关性检验的临界值表:

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(2)某机构调研了大量已经开店的店主,据统计,只开网店的占调查总人数的,既开网店又开实体店的占调查总人数的,现以此调查统计结果作为概率,若从上述统计的店主中随机抽查了5位,求只开实体店的人数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以为焦点的双曲线上,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据全球摩天大楼的统计,至2019年,安徽省合肥市的摩天大楼已经有95座在中国城市中排名第10位,全球排名第15位,目前合肥恒大中心建设中的最高楼,外形设计成了“竹节”的形态,既体现了力量超凡,又象征着向上生长的强烈意志,更预示了未来的繁荣和兴旺.它与传承千年的“微文化”相得益建成后将跻身世界十大摩天大楼之列,若大楼由9节“竹节”组成,最上部分的4节高228米,最下部分3节高204米,且每一节高度变化均匀(即每节高度自上而下成等差数列),则该摩天大楼的总高度为(

A.518B.558C.588D.668

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,若函数有4个零点,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

同步练习册答案