精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=﹣ sinx cosx+1 (Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.

【答案】解:(Ⅰ)函数f(x)=﹣ sinx cosx+1=﹣sin(x+ )+1,故该函数的最小正周期为2π, 令2kπ+ ≤x+ ≤2kπ+ ,求得2kπ+ ≤x≤2kπ+ ,可得函数的增区间为[2kπ+ ,2kπ+ ],k∈Z.
(Ⅱ)若x∈[0, ],则x+ ∈[ ],又f(x)= ,即﹣sin(x+ )+1= ,即sin(x+ )=
∴cos(x+ )=±
若cos(x+ )=﹣ ,则cosx=cos[(x+ )﹣ ]=cos(x+ ) cos +sin(x+ ) sin =﹣ + = <0,不合题意,舍去.
若cos(x+ )= ,则cosx=cos[(x+ )﹣ ]=cos(x+ ) cos +sin(x+ ) sin = + =
综上可得,cosx=
【解析】(Ⅰ)利用两角和的正弦公式化简函数f(x)的解析式,再利用正弦函数的周期性和单调性,求得函数f(x)的最小正周期和单调递增区间.(Ⅱ)若x∈[0, ],利用同角三角函数的基本关系、两角差的余弦公式,求得cosx的值.
【考点精析】根据题目的已知条件,利用正弦函数的单调性的相关知识可以得到问题的答案,需要掌握正弦函数的单调性:在上是增函数;在上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点恰好是抛物线x2=8 y的焦点.
(1)求椭圆C的方程;
(2)已知P(2,m)、Q(2,﹣m)(m>0)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是(
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:(4x﹣3)2≤1;命题q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的非负半轴为极轴建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程为,直线与曲线交于两点,与轴交于点.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设).对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:

分组

频数

频率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合计

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

同步练习册答案