精英家教网 > 高中数学 > 题目详情

【题目】已知焦距为2的椭圆W: =1(a>b>0)的左、右焦点分别为A1 , A2 , 上、下顶点分别为B1 , B2 , 点M(x0 , y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1 , MA2 , MB1 , MB2的斜率之积为

(1)求椭圆W的标准方程;
(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.

【答案】
(1)

解:由题意可知:2c=2,c=1,a2﹣b2=1,

∵M(x0,y0)为椭圆W上不在坐标轴上的任意一点,

= (a2 ), = (b2 ),

= =

= =( 2= ,则a2=2b2

∴a2=2,b2=1,

∴椭圆W的标准方程


(2)

解:证明:不妨设点A(x1,y1),D(x2,y2),B的坐标(﹣x1,﹣y1),C(x1,0),

∵A,D在椭圆上, ,=0,即(x1﹣x2)(x1+x2)+2(y1﹣y2)(y1+y2)=0,

=﹣

由AD⊥AB,

∴kADkAB=﹣1, =﹣1, (﹣ ,)=﹣1,

=

∴kBD﹣kBC= = =0,

kBD=kBC

∴B,C,D三点共线


【解析】(1)由c=1,a2﹣b2=1,求得四条直线的斜率,由斜率乘积为 ,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;(2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由kADkAB=﹣1,代入求得 = ,由kBD﹣kBC=0,即可求证kBD=kBC , 即可求证B,C,D三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体中,分别是的中点,

(1)求证:平面;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年6月22日“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15—75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: .把年龄落在区间自 内的人分别称为“青少年”和“中老年”.

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;

(2)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;

临界值表:

附:参考公式

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某种农作物在特定温度下要求最高温度满足:的生长状况某农学家需要在十月份去某地进行为期十天的连续观察试验现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度单位:的记录如下:

根据本次试验目的和试验周期写出农学家观察试验的起始日期

设该地区今年10月上旬101日至1010的最高温度的方差和最低温度的方差分别为估计的大小?直接写出结论即可

10月份31天中随机选择连续三天求所选3天每天日平均最高温度值[2730]之间的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用部分自然数构造如图的数表:用表示第行第个数,使得,每行中的其他各数分别等于其“肩膀”上的两个数之和,设第行中的各数之和为.

已知,求的值;

,证明:是等比数列,并求出的通项公式;

数列中是否存在不同的三项恰好成等差数列?若存在,求出的关系,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1:axby+4=0,l2:(a1)x+y+b=0. 求满足下列条件的a,b值.

)l1l2且l1过点(3,1);

)l1l2且原点到这两直线的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案